10 resultados para Satellite datasets

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this study was todo a statistical analysis of ecological type from optical satellite data, using Tipping's sparse Bayesian algorithm. This thesis uses "the Relevence Vector Machine" algorithm in ecological classification betweenforestland and wetland. Further this bi-classification technique was used to do classification of many other different species of trees and produces hierarchical classification of entire subclasses given as a target class. Also, we carried out an attempt to use airborne image of same forest area. Combining it with image analysis, using different image processing operation, we tried to extract good features and later used them to perform classification of forestland and wetland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Menestyäkseen nykymaailmassa ihmiset ovat turvautuneet toisiinsa muodostaen samallaerilaisia yhteisöjä ja verkostoja. Näille yhteisöille on tunnusomaista, että niissä vaikuttavien jäsenien ajatustavat yhtyvät keskenään. Yhteisöissä syntyy uusia ideoita ja keksintöjä. Niiden välittäminen maailmalle on usein kuitenkin ongelmallista. Digitaalisuus, Internet ja monet muut uudet teknologiat tuovat yhden ratkaisun ongelmaan. Eräs uuden teknologian mahdollistama kanava on yhteisötelevisio, jonka kautta yhteisön viestintää voidaan tehokkaasti välittää. Yhteisöilläei kuitenkaan ole teknistä taitoa toteuttaa tällaista palvelua. Yhteisöille, kuten pk-yrityksille, kouluille, seuroille, yhdistyksille ja jopa yksittäisille ihmisille, tuleekin pystyä tarjoamaan valmis konsepti, joka on helposti heidän käytettävissään. Tämä diplomityö toimii teknisenä pohjana Finnish Satellite Television Oy:n yhteisö-tv -palvelukonseptille, joka tullaan ottamaan laajamittaiseen käyttöön vuoden 2007 aikana. Työssä käydään läpi yhteisön ja yhteisöllisyyden tunnusmerkit ja peruspiirteet, luodaan katsaus yhteisötelevision alkutaipaleisiin, nykytilaan ja sen eri ratkaisuihin. Lisäksi tutustutaan yhteisö-tv:n kansainvälisiin ja kotimaisiin kokeiluihin ja pilottiprojekteihin. Työn teknisessä osassa tutkitaan yhteisötelevision mahdollistaviin teknologioihin, siirtoteihin sekä digitaalisiin tuotantojärjestelmiin. Lopuksi työssä kootaan yhteen käytettävyydeltään, liikutettavuudeltaan ja kustannustehokkuudeltaan sopivimmat tekniset toteutusvaihtoehdot konseptin käyttöönottoa varten.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we study the classification of forest types using mathematics based image analysis on satellite data. We are interested in improving classification of forest segments when a combination of information from two or more different satellites is used. The experimental part is based on real satellite data originating from Canada. This thesis gives summary of the mathematics basics of the image analysis and supervised learning , methods that are used in the classification algorithm. Three data sets and four feature sets were investigated in this thesis. The considered feature sets were 1) histograms (quantiles) 2) variance 3) skewness and 4) kurtosis. Good overall performances were achieved when a combination of ASTERBAND and RADARSAT2 data sets was used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigates the spatial and spectral discrimination potential for grassland patches in the inner Turku Archipelago using Landsat Thematic Mapper satellite imagery. The spatial discrimination potential was computed through overlay analysis using official grassland parcel data and a hypothetical 30 m resolution satellite image capturing the site. It found that Landsat TM imagery’s ability to retrieve pure or near-pure pixels (90% purity or more) from grassland patches smaller than 1 hectare was limited to 13% success, compared to 52% success when upscaling the resolution to 10 x 10 m pixel size. Additionally, the perimeter/area patch metric is proposed as a predictor for the suitability of the spatial resolution of input imagery. Regression analysis showed that there is a strong negative correlation between a patch’s perimeter/area ratio and its pure pixel potential. The study goes on to characterise the spectral response and discrimination potential for the five main grassland types occurring in the study area: recreational grassland, traditional pasture, modern pasture, fodder production grassland and overgrown grassland. This was done through the construction of spectral response curves, a coincident spectral plot and a contingency matrix as well as by calculating the transformed divergence for the spectral signatures, all based on training samples from the TM imagery. Substantial differences in spectral discrimination potential between imagery from the beginning of the growing season and the middle of summer were found. This is because the spectral responses for these five grassland types converge as the peak of the growing season draws nearer. Recreational grassland shows a consistent discrimination advantage over other grassland types, whereas modern pasture is most easily confused. Traditional pasture land, perhaps the most biologically valuable grassland type, can be spectrally discriminated from other grassland types with satisfactory success rates provided early growing season imagery is used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

State-of-the-art predictions of atmospheric states rely on large-scale numerical models of chaotic systems. This dissertation studies numerical methods for state and parameter estimation in such systems. The motivation comes from weather and climate models and a methodological perspective is adopted. The dissertation comprises three sections: state estimation, parameter estimation and chemical data assimilation with real atmospheric satellite data. In the state estimation part of this dissertation, a new filtering technique based on a combination of ensemble and variational Kalman filtering approaches, is presented, experimented and discussed. This new filter is developed for large-scale Kalman filtering applications. In the parameter estimation part, three different techniques for parameter estimation in chaotic systems are considered. The methods are studied using the parameterized Lorenz 95 system, which is a benchmark model for data assimilation. In addition, a dilemma related to the uniqueness of weather and climate model closure parameters is discussed. In the data-oriented part of this dissertation, data from the Global Ozone Monitoring by Occultation of Stars (GOMOS) satellite instrument are considered and an alternative algorithm to retrieve atmospheric parameters from the measurements is presented. The validation study presents first global comparisons between two unique satellite-borne datasets of vertical profiles of nitrogen trioxide (NO3), retrieved using GOMOS and Stratospheric Aerosol and Gas Experiment III (SAGE III) satellite instruments. The GOMOS NO3 observations are also considered in a chemical state estimation study in order to retrieve stratospheric temperature profiles. The main result of this dissertation is the consideration of likelihood calculations via Kalman filtering outputs. The concept has previously been used together with stochastic differential equations and in time series analysis. In this work, the concept is applied to chaotic dynamical systems and used together with Markov chain Monte Carlo (MCMC) methods for statistical analysis. In particular, this methodology is advocated for use in numerical weather prediction (NWP) and climate model applications. In addition, the concept is shown to be useful in estimating the filter-specific parameters related, e.g., to model error covariance matrix parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014