1 resultado para S. cerevisiae
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Succinate is a naturally occurring metabolite in organism’s cell and is industrially important chemical with various applications in food and pharmaceutical industry. It is also widely used to produce bio-degradable plastics, surfactants, detergents etc. In last decades, emphasis has been given to bio-based chemical production using industrial biotechnology route rather than fossil-based production considering sustainability and environment friendly economy. In this thesis I am presenting a computational model for silico metabolic engineering of Saccharomyces cerevisiae for large scale production of succinate. For metabolic modelling, I have used OptKnock and OptGene optimization algorithms to identify the reactions to delete from the genome-scale metabolic model of S. cerevisiae to overproduce succinate by coupling with organism’s growth. Both OptKnock and OptGene proposed numerous straightforward and non-intuitive deletion strategies when number of constraints including growth constraint to the model were applied. The most interesting strategy identified by both algorithms was deletion combination of pyruvate decarboxylase and Ubiquinol:ferricytochrome c reductase(respiratory enzyme) reactions thereby also suggesting anaerobic fermentation of the organism in glucose medium. Such strategy was never reported earlier for growth-coupled succinate production in S.cerevisiae.