10 resultados para S. cerevisiae
em CaltechTHESIS
Resumo:
Pre-mRNA splicing requires interaction of cis- acting intron sequences with trans -acting factors: proteins and small nuclear ribonucleoproteins (snRNPs). The assembly of these factors into a large complex, the spliceosome, is essential for the subsequent two step splicing reaction. First, the 5' splice site is cleaved and free exon 1 and a lariat intermediate (intron- exon2) form. In the second reaction the 3' splice site is cleaved the exons ligated and lariat intron released. A combination of genetic and biochemical techniques have been used here to study pre-mRNA splicing in yeast.
Yeast introns have three highly conserved elements. We made point mutations within these elements and found that most of them affect splicing efficiency in vivo and in vitro, usually by inhibiting spliceosome assembly.
To study trans -acting splicing factors we generated and screened a bank of temperature- sensitive (ts) mutants. Eleven new complementation groups (prp17 to prp27) were isolated. The four phenotypic classes obtained affect different steps in splicing and accumulate either: 1) pre-mRNA, 2) lariat intermediate, 3) excised intron or 4) both pre-mRNA and intron. The latter three classes represent novel phenotypes. The excised intron observed in one mutant: prp26 is stabilized due to protection in a snRNP containing particle. Extracts from another mutant: prpl8 are heat labile and accumulate lariat intermediate and exon 1. This is especially interesting as it allows analysis of the second splicing reaction. In vitro complementation of inactivated prp18 extracts does not require intact snRNPs. These studies have also shown the mutation to be in a previously unknown splicing protein. A specific requirement for A TP is also observed for the second step of splicing. The PRP 18 gene has been cloned and its polyadenylated transcript identified.
Resumo:
The yeast Saccharomyces cerevisiae contains a family of hsp70 related genes. One member of this family, SSA1, encodes a 70kD heat-shock protein which in addition to its heat inducible expression has a significant basal level of expression. The first 500 bp upstream of the SSA1 start point of transcription was examined by DNAse I protection analysis. The results reveal the presence of at least 14 factor binding sites throughout the upstream promoter region. The function of these binding sites has been examined using a series of 5' promoter deletions fused to the recorder gene lacZ in a centromere-containing yeast shuttle vector. The following sites have been identified in the promoter and their activity in yeast determined individually with a centromere-based recorder plasmid containing a truncated CYC1 /lacZ fusion: a heat-shock element or HSE which is sufficient to convey heat-shock response on the recorder plasmid; a homology to the SV40 'core' sequence which can repress the GCN4 recognition element (GCRE) and the yAP1 recognition element (ARE), and has been designated a upstream repression element or URE; a 'G'-rich region named G-box which can also convey heatshock response on the recorder plasmid; and a purine-pyrimidine alternating sequence name GT-box which is an activator of transcription. A series of fusion constructs were made to identify a putative silencer-like element upstream of SSA1. This element is position dependent and has been localized to a region containing both an ABF1 binding site and a RAP1 binding site. Five site-specific DNA-binding factors are identified and their purification is presented: the heat-shock transcription factor or HSTF, which recognizes the HSE; the G-box binding factor or GBF; the URE recognition factor or URF; the GT-box binding factor; and the GC-box binding factor or yeast Sp1.
Resumo:
Cdc48/p97 is an essential, highly abundant hexameric member of the AAA (ATPase associated with various cellular activities) family. It has been linked to a variety of processes throughout the cell but it is best known for its role in the ubiquitin proteasome pathway. In this system it is believed that Cdc48 behaves as a segregase, transducing the chemical energy of ATP hydrolysis into mechanical force to separate ubiquitin-conjugated proteins from their tightly-bound partners.
Current models posit that Cdc48 is linked to its substrates through a variety of adaptor proteins, including a family of seven proteins (13 in humans) that contain a Cdc48-binding UBX domain. As such, due to the complexity of the network of adaptor proteins for which it serves as the hub, Cdc48/p97 has the potential to exert a profound influence on the ubiquitin proteasome pathway. However, the number of known substrates of Cdc48/p97 remains relatively small, and smaller still is the number of substrates that have been linked to a specific UBX domain protein. As such, the goal of this dissertation research has been to discover new substrates and better understand the functions of the Cdc48 network. With this objective in mind, we established a proteomic screen to assemble a catalog of candidate substrate/targets of the Ubx adaptor system.
Here we describe the implementation and optimization of a cutting-edge quantitative mass spectrometry method to measure relative changes in the Saccharomyces cerevisiae proteome. Utilizing this technology, and in order to better understand the breadth of function of Cdc48 and its adaptors, we then performed a global screen to identify accumulating ubiquitin conjugates in cdc48-3 and ubxΔ mutants. In this screen different ubx mutants exhibited reproducible patterns of conjugate accumulation that differed greatly from each other, pointing to various unexpected functional specializations of the individual Ubx proteins.
As validation of our mass spectrometry findings, we then examined in detail the endoplasmic-reticulum bound transcription factor Spt23, which we identified as a putative Ubx2 substrate. In these studies ubx2Δ cells were deficient in processing of Spt23 to its active p90 form, and in localizing p90 to the nucleus. Additionally, consistent with reduced processing of Spt23, ubx2Δ cells demonstrated a defect in expression of their target gene OLE1, a fatty acid desaturase. Overall, this work demonstrates the power of proteomics as a tool to identify new targets of various pathways and reveals Ubx2 as a key regulator lipid membrane biosynthesis.
Resumo:
Cells exhibit a diverse repertoire of dynamic behaviors. These dynamic functions are implemented by circuits of interacting biomolecules. Although these regulatory networks function deterministically by executing specific programs in response to extracellular signals, molecular interactions are inherently governed by stochastic fluctuations. This molecular noise can manifest as cell-to-cell phenotypic heterogeneity in a well-mixed environment. Single-cell variability may seem like a design flaw but the coexistence of diverse phenotypes in an isogenic population of cells can also serve a biological function by increasing the probability of survival of individual cells upon an abrupt change in environmental conditions. Decades of extensive molecular and biochemical characterization have revealed the connectivity and mechanisms that constitute regulatory networks. We are now confronted with the challenge of integrating this information to link the structure of these circuits to systems-level properties such as cellular decision making. To investigate cellular decision-making, we used the well studied galactose gene-regulatory network in \textit{Saccharomyces cerevisiae}. We analyzed the mechanism and dynamics of the coexistence of two stable on and off states for pathway activity. We demonstrate that this bimodality in the pathway activity originates from two positive feedback loops that trigger bistability in the network. By measuring the dynamics of single-cells in a mixed sugar environment, we observe that the bimodality in gene expression is a transient phenomenon. Our experiments indicate that early pathway activation in a cohort of cells prior to galactose metabolism can accelerate galactose consumption and provide a transient increase in growth rate. Together these results provide important insights into strategies implemented by cells that may have been evolutionary advantageous in competitive environments.
Resumo:
DNA damage is extremely detrimental to the cell and must be repaired to protect the genome. DNA is capable of conducting charge through the overlapping π-orbitals of stacked bases; this phenomenon is extremely sensitive to the integrity of the π-stack, as perturbations attenuate DNA charge transport (CT). Based on the E. coli base excision repair (BER) proteins EndoIII and MutY, it has recently been proposed that redox-active proteins containing metal clusters can utilize DNA CT to signal one another to locate sites of DNA damage.
To expand our repertoire of proteins that utilize DNA-mediated signaling, we measured the DNA-bound redox potential of the nucleotide excision repair (NER) helicase XPD from Sulfolobus acidocaldarius. A midpoint potential of 82 mV versus NHE was observed, resembling that of the previously reported BER proteins. The redox signal increases in intensity with ATP hydrolysis in only the WT protein and mutants that maintain ATPase activity and not for ATPase-deficient mutants. The signal increase correlates directly with ATP activity, suggesting that DNA-mediated signaling may play a general role in protein signaling. Several mutations in human XPD that lead to XP-related diseases have been identified; using SaXPD, we explored how these mutations, which are conserved in the thermophile, affect protein electrochemistry.
To further understand the electrochemical signaling of XPD, we studied the yeast S. cerevisiae Rad3 protein. ScRad3 mutants were incubated on a DNA-modified electrode and exhibited a similar redox potential to SaXPD. We developed a haploid strain of S. cerevisiae that allowed for easy manipulation of Rad3. In a survival assay, the ATPase- and helicase-deficient mutants show little survival, while the two disease-related mutants exhibit survival similar to WT. When both a WT and G47R (ATPase/helicase deficient) strain were challenged with different DNA damaging agents, both exhibited comparable survival in the presence of hydroxyurea, while with methyl methanesulfonate and camptothecin, the G47R strain exhibits a significant change in growth, suggesting that Rad3 is involved in repairing damage beyond traditional NER substrates. Together, these data expand our understanding of redox-active proteins at the interface of DNA repair.
Resumo:
Homologous recombination is a source of diversity in both natural and directed evolution. Standing genetic variation that has passed the test of natural selection is combined in new ways, generating functional and sometimes unexpected changes. In this work we evaluate the utility of homologous recombination as a protein engineering tool, both in comparison with and combined with other protein engineering techniques, and apply it to an industrially important enzyme: Hypocrea jecorina Cel5a.
Chapter 1 reviews work over the last five years on protein engineering by recombination. Chapter 2 describes the recombination of Hypocrea jecorina Cel5a endoglucanase with homologous enzymes in order to improve its activity at high temperatures. A chimeric Cel5a that is 10.1 °C more stable than wild-type and hydrolyzes 25% more cellulose at elevated temperatures is reported. Chapter 3 describes an investigation into the synergy of thermostable cellulases that have been engineered by recombination and other methods. An engineered endoglucanase and two engineered cellobiohydrolases synergistically hydrolyzed cellulose at high temperatures, releasing over 200% more reducing sugars over 60 h at their optimal mixture relative to the best mixture of wild-type enzymes. These results provide a framework for engineering cellulolytic enzyme mixtures for the industrial conditions of high temperatures and long incubation times.
In addition to this work on recombination, we explored three other problems in protein engineering. Chapter 4 describes an investigation into replacing enzymes with complex cofactors with simple cofactors, using an E. coli enolase as a model system. Chapter 5 describes engineering broad-spectrum aldehyde resistance in Saccharomyces cerevisiae by evolving an alcohol dehydrogenase simultaneously for activity and promiscuity. Chapter 6 describes an attempt to engineer gene-targeted hypermutagenesis into E. coli to facilitate continuous in vivo selection systems.
Resumo:
Semisynthesis of horse heart cytochrome c and site-directed mutagenesis of Saccharomyces cerevisiae (S. c.) iso-1-cytochrome c have been utilized to substitute Ala for the cytochrome c heme axial ligand Met80 to yield ligand-binding proteins (horse heart Ala80cyt c and S.c. Ala80cyt c) with spectroscopic properties remarkably similar to those of myoglobin. Both species of Fe(II)Ala80cyt c form exceptionally stable dioxygen complexes with autoxidation rates 10-30x smaller and O<sub>2sub> binding constants ~ 3x greater than those of myoglobin. The resistance of O<sub>2sub>-Fe(II)Ala80cyt c to autoxidation is attributed in part to protection of the heme site from solvent as exhibited by the exceptionally slow rate of CO binding to the heme as well as the low quantum yield of CO photodissociation.
UV/vis, EPR, and paramagnetic NMR spectroscopy indicate that at pH 7 the Fe(III)Ala80cyt c heme is low-spin with axial His-OH<sup>-sup> coordination and that below pH ~6.5, Fe(III)Ala80cyt cis high-spin with His-H<sub>2sub>O heme ligation. Significant differences in the pH dependence of the <sup>1sup>H NMR spectra of S.c. Fe(III)Ala80cyt c compared to wild-type demonstrate that the axial ligands influence the conformational energetics of cytochrome c.
<sup>1sup>H NMR spectroscopy has been utilized to determine the solution structure of the cyanide derivative of S.c. Fe(III)Ala80cyt c. 82% of the resonances in the <sup>1sup>H NMR spectrum of S.c. CN-Fe(III)Ala80cyt c have been assigned through 1D and 2D experiments. The RMSD values after restrained energy minimization of the family of 17 structures obtained from distance geometry calculations are 0.68 ± 0.11 Å for the backbone and 1.32 ± 0.14 Å for all heavy atoms. The solution structure indicates that a tyrosine in the "distal" pocket of CN-Fe(III)Ala80cyt c forms a hydrogen bond with the Fe(III)-CN unit, suggesting that it may play a role analogous to that of the distal histidine in myoglobin in stabilizing the dioxygen adduct.
Resumo:
During early stages of Drosophila development the heat shock response cannot be induced. It is reasoned that the adverse effects on cell cycle and cell growth brought about by Hsp70 induction must outweigh the beneficial aspects of Hsp70 induction in the early embryo. Although the Drosophila heat shock transcription factor (dHSF) is abundant in the early embryo, it does not enter the nucleus in response to heat shock. In older embryos and in cultured cells the factor is localized within the nucleus in an apparent trimeric structure that binds DNA with high affinity. The domain responsible for nuclear localization upon stress resides between residues 390 and 420 of the dHSF. Using that domain as bait in a yeast two-hybrid system we now report the identification and cloning of a nuclear transport protein Drosophila karyopherin-α3(dKap- α3). Biochemical methods demonstrate that the dKap-α3 protein binds specifically to the dHSF's nuclear localization sequence (NLS). Furthermore, the dKap-α3 protein does not associate with NLSs that contain point mutations which are not transported in vivo. Nuclear docking studies also demonstrate specific nuclear targeting of the NLS substrate by dKap-α3.Consistant with previous studies demonstrating that early Drosophila embryos are refractory to heat shock as a result of dHSF nuclear exclusion, we demonstrate that the early embryo is deficient in dKap-α3 protein through cycle 12. From cycle 13 onward the transport factor is present and the dHSF is localized within the nucleus thus allowing the embryo to respond to heat shock.
The pair-rule gene fushi tarazu (ftz) is a well-studied zygotic segmentation gene that is necessary for the development of the even-numbered parasegments in Drosophila melanogastor. During early embryogenesis, ftz is expressed in a characteristic pattern of seven stripes, one in each of the even-numbered parasegments. With a view to understand how ftz is transcriptionally regulated, cDNAs that encode transcription factors that bind to the zebra element of the ftz promoter have been cloned. Chapter Ill reports the cloning and characterization of the eDNA encoding zeb-1 (zebra element binding protein), a novel steroid receptor-like molecule that specifically binds to a key regulatory element of the ftz promoter. In transient transfection assays employing Drosophila tissue culture cells, it has been shown that zeb-1 as well as a truncated zeb-1 polypeptide (zeb480) that lacks the putative ligand binding domain function as sequencespecific trans-activators of the ftz gene.
The Oct factors are members of the POU family of transcription factors that are shown to play important roles during development in mammals. Chapter IV reports the eDNA cloning and expression of a Drosophila Oct transcription factor. Whole mount in-situ hybridization experiments revealed that the spatial expression patterns of this gene during embryonic development have not yet been observed for any other gene. In early embryogenesis, its transcripts are transiently expressed as a wide uniform band from 20-40% of the egg length, very similar to that of gap genes. This pattern progressively resolves into a series of narrower stripes followed by expression in fourteen stripes. Subsequently, transcripts from this gene are expressed in the central nervous system and the brain. When expressed in the yeast Saccharomyces cerevisiae, this Drosophila factor functions as a strong, octamer-dependent activator of transcription. The data strongly suggest possible functions for the Oct factor in pattern formation in Drosophila that might transcend the boundaries of genetically defined segmentation genes.
Resumo:
Mitochondria can remodel their membranes by fusing or dividing. These processes are required for the proper development and viability of multicellular organisms. At the cellular level, fusion is important for mitochondrial Ca2+ homeostasis, mitochondrial DNA maintenance, mitochondrial membrane potential, and respiration. Mitochondrial division, which is better known as fission, is important for apoptosis, mitophagy, and for the proper allocation of mitochondria to daughter cells during cellular division.
The functions of proteins involved in fission have been best characterized in the yeast model organism Sarccharomyces cerevisiae. Mitochondrial fission in mammals has some similarities. In both systems, a cytosolic dynamin-like protein, called Dnm1 in yeast and Drp1 in mammals, must be recruited to the mitochondrial surface and polymerized to promote membrane division. Recruitment of yeast Dnm1 requires only one mitochondrial outer membrane protein, named Fis1. Fis1 is conserved in mammals, but its importance for Drp1 recruitment is minor. In mammals, three other receptor proteins—Mff, MiD49, and MiD51—play a major role in recruiting Drp1 to mitochondria. Why mammals require three additional receptors, and whether they function together or separately, are fundamental questions for understanding the mechanism of mitochondrial fission in mammals.
We have determined that Mff, MiD49, or MiD51 can function independently of one another to recruit Drp1 to mitochondria. Fis1 plays a minor role in Drp1 recruitment, suggesting that the emergence of these additional receptors has replaced the system used by yeast. Additionally, we found that Fis1/Mff and the MiDs regulate Drp1 activity differentially. Fis1 and Mff promote constitutive mitochondrial fission, whereas the MiDs activate recruited Drp1 only during loss of respiration.
To better understand the function of the MiDs, we have determined the atomic structure of the cytoplasmic domain of MiD51, and performed a structure-function analysis of MiD49 based on its homology to MiD51. MiD51 adopts a nucleotidyl transferase fold, and binds ADP as a co-factor that is essential for its function. Both MiDs contain a loop segment that is not present in other nucleotidyl transferase proteins, and this loop is used to interact with Drp1 and to recruit it to mitochondria.
Resumo:
Systems-level studies of biological systems rely on observations taken at a resolution lower than the essential unit of biology, the cell. Recent technical advances in DNA sequencing have enabled measurements of the transcriptomes in single cells excised from their environment, but it remains a daunting technical problem to reconstruct in situ gene expression patterns from sequencing data. In this thesis I develop methods for the routine, quantitative in situ measurement of gene expression using fluorescence microscopy.
The number of molecular species that can be measured simultaneously by fluorescence microscopy is limited by the pallet of spectrally distinct fluorophores. Thus, fluorescence microscopy is traditionally limited to the simultaneous measurement of only five labeled biomolecules at a time. The two methods described in this thesis, super-resolution barcoding and temporal barcoding, represent strategies for overcoming this limitation to monitor expression of many genes in a single cell. Super-resolution barcoding employs optical super-resolution microscopy (SRM) and combinatorial labeling via-smFISH (single molecule fluorescence in situ hybridization) to uniquely label individual mRNA species with distinct barcodes resolvable at nanometer resolution. This method dramatically increases the optical space in a cell, allowing a large numbers of barcodes to be visualized simultaneously. As a proof of principle this technology was used to study the S. cerevisiae calcium stress response. The second method, sequential barcoding, reads out a temporal barcode through multiple rounds of oligonucleotide hybridization to the same mRNA. The multiplexing capacity of sequential barcoding increases exponentially with the number of rounds of hybridization, allowing over a hundred genes to be profiled in only a few rounds of hybridization.
The utility of sequential barcoding was further demonstrated by adapting this method to study gene expression in mammalian tissues. Mammalian tissues suffer both from a large amount of auto-fluorescence and light scattering, making detection of smFISH probes on mRNA difficult. An amplified single molecule detection technology, smHCR (single molecule hairpin chain reaction), was developed to allow for the quantification of mRNA in tissue. This technology is demonstrated in combination with light sheet microscopy and background reducing tissue clearing technology, enabling whole-organ sequential barcoding to monitor in situ gene expression directly in intact mammalian tissue.
The methods presented in this thesis, specifically sequential barcoding and smHCR, enable multiplexed transcriptional observations in any tissue of interest. These technologies will serve as a general platform for future transcriptomic studies of complex tissues.