64 resultados para Reduced-basis approximation

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The parameter setting of a differential evolution algorithm must meet several requirements: efficiency, effectiveness, and reliability. Problems vary. The solution of a particular problem can be represented in different ways. An algorithm most efficient in dealing with a particular representation may be less efficient in dealing with other representations. The development of differential evolution-based methods contributes substantially to research on evolutionary computing and global optimization in general. The objective of this study is to investigatethe differential evolution algorithm, the intelligent adjustment of its controlparameters, and its application. In the thesis, the differential evolution algorithm is first examined using different parameter settings and test functions. Fuzzy control is then employed to make control parameters adaptive based on an optimization process and expert knowledge. The developed algorithms are applied to training radial basis function networks for function approximation with possible variables including centers, widths, and weights of basis functions and both having control parameters kept fixed and adjusted by fuzzy controller. After the influence of control variables on the performance of the differential evolution algorithm was explored, an adaptive version of the differential evolution algorithm was developed and the differential evolution-based radial basis function network training approaches were proposed. Experimental results showed that the performance of the differential evolution algorithm is sensitive to parameter setting, and the best setting was found to be problem dependent. The fuzzy adaptive differential evolution algorithm releases the user load of parameter setting and performs better than those using all fixedparameters. Differential evolution-based approaches are effective for training Gaussian radial basis function networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Maassa olevan nitraattitypen arviointi simulointimallin avulla

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Suolapitoisuuden pienentämisen vaikutus kinkkuleikkeen aistittuun suolaisuuteen

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Aurattoman viljelyn vaikutus eroosioon ja ravinnehuuhtoumiin eteläsuomlaisella, savimaalla sijaitsevalla pellolla

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diplomityössä tehdään jatkokehitystä KCI Konecranes yrityksen siltanosturin laskentaohjelmaan. Ohjelman tärkeimmät jatkokehityskohteet kartoitettiin käyttäjäkyselyn avulla ja niistä valittiin toivotuimmat, sekä diplomityön lujuusopilliseen aihepiiriin parhaiten soveltuvat. Työhön valitut kaksi aihetta ovat koteloprofiilin kaksiosaisen uuman lujuuslaskennan selvittäminen ja siltanosturin kahdeksanpyöräisenpäätykannattajan elementtimallin suunnittelu. Diplomityössä selvitetään jatkokehityskohteisiin liittyvä teoria, mutta varsinainen ohjelmointi jätetään työn ulkopuolelle. Kaksiosaisella uumalla varustetussa koteloprofiilissa nostovaunun kulkukiskon alla olevan uuman yläosa tehdään paksummaksi, jotta uuma kestäisi nostovaunun pyöräkuormasta aiheutuvan paikallisen jännityksen, eliniin sanotun rusennusjännityksen. Rusennusjännityksen määrittäminen uumalevyissä on kaksiosaisen uuman lujuuslaskennan tärkein tehtävä. Rusennuksen aiheuttamankalvojännityksen ja jännityskeskittymien määrittämiseen erilaisissa konstruktioissa etsittiin sopivimmat menetelmät kirjallisuudesta ja standardeista. Kalvojännitys voidaan määrittää luotettavasti käyttäen joko 45 asteen sääntöä tai standardin mukaista menetelmää ja jännityskonsentraatioiden suuruus saadaan kertomallakalvojännitys jännityskonsentraatiokertoimilla. Menetelmien toimivuus verifioitiin tekemällä kymmeniä uuman elementtimalleja erilaisin dimensioin ja reunaehdoin ja vertaamalla elementtimallien tuloksia käsin laskettuihin. Käsin lasketut jännitykset saatiin vastaamaan tarkasti elementtimallien tuloksia. Kaksiosaisen uuman lommahdus- ja väsymislaskentaa tutkittiin alustavasti. Kahdeksanpyöräisiä päätykannattajia käytetään suurissa siltanostureissa pienentämään pyöräkuormia ja radan rusennusjännityksiä. Kahdeksanpyöräiselle siltanosturin päätykannattajalle suunniteltiin elementtimallit molempiin rakenteesta käytettyihin konstruktioihin: nivelöityyn ja jäykkäkehäiseen malliin. Elementtimallien rakentamisessa hyödynnettiin jo olemassa olevia malleja, jolloin niiden lisääminen ohjelmakoodiin nopeutuu ja ne ovat varmasti yhteensopivia muiden laskentamoduuleiden kanssa. Elementtimallien värähtelyanalyysin reunaehtoja tarkasteltiin. Värähtelyanalyysin reunaehtoihin ei tutkimuksen perusteella tarvitse tehdä muutoksia, mutta staattisen analyysin reunaehdot kaipaavat vielä lisätutkimusta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myllykoski Paper Oy:n PK6:n kapeiden asiakasrullien vanoittuminen on aiheuttanut tuotannonmenetyksiä. Tämän työn tavoitteena oli pyrkiä selvittämään SC-paperirullissa esiintyvän vanaisuuden syntymekanismeja ja sitä, kuinka pituusleikkurilla voitaisiin vähentää vanan muodostumista asiakasrulliin. Työn kirjallisuusosassa selvitettiin rullaustapahtumaa pituusleikkurilla, paperin rullautuvuuteen vaikuttavia tekijöitä ja SC-paperille soveltuvia pituusleikkurityyppejä. Tässäyhteydessä syvennyttiin vanan syntymekanismeihin ja vanan syntymisen mahdollisiin ehkäisymenetelmiin. Vanan muodostumiseen vaikuttavat rainassa olevat jyrkät muutokset mm. neliömassa- ja paksuuspoikkiprofiileissa sekä pituusleikkurin rullausasemien linjauksen virheellisyys. Työn kokeellinen osa jakautui kahteen osaan.Esikokeissa tilastoitiin vanarullien muodostuminen eri pituusleikkurin rullausasemien, rullausposition ja käytetyn superkalanterin mukaan. Vanarullien paperista tutkittiin poikkisuuntaisia profiileja vanan syntysyiden löytämiseksi. Vanarullat olivat pääasiassa rainan reunoista leikattuja ja esikokeiden aikana suurin osan vanarullista muodostui superkalanteri II:n tambuureista. Koeajossa tutkittiin pituusleikkurin ajoparametrien ja rullausposition vaikutusta vanan muodostumiseen kapeassa rainan reunaosasta leikattavassa rullassa. Paperissa olevan profiilivian aiheuttamaa vanaa ei pystytty poistamaan ajoparametrimuutoksilla poistamaan koeajossa. Pituusleikkurin rullausasemien ja telojen linjaus sekä liikkuvien osien välysten poistaminen vähensi vanan muodostumista. Paperin neliömassa- ja paksuusprofiileissa kapealla alueella tapahtuvat jyrkät muutokset lisäsivät merkittävästi vanan muodostumista. Paperin profiilien hallinnalla ja pituusleikkurin kuluvien osien ennakoivalla huollolla voidaan vähentää vanan muodostumista asiakasrulliin.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuzzy set theory and Fuzzy logic is studied from a mathematical point of view. The main goal is to investigatecommon mathematical structures in various fuzzy logical inference systems and to establish a general mathematical basis for fuzzy logic when considered as multi-valued logic. The study is composed of six distinct publications. The first paper deals with Mattila'sLPC+Ch Calculus. THis fuzzy inference system is an attempt to introduce linguistic objects to mathematical logic without defining these objects mathematically.LPC+Ch Calculus is analyzed from algebraic point of view and it is demonstratedthat suitable factorization of the set of well formed formulae (in fact, Lindenbaum algebra) leads to a structure called ET-algebra and introduced in the beginning of the paper. On its basis, all the theorems presented by Mattila and many others can be proved in a simple way which is demonstrated in the Lemmas 1 and 2and Propositions 1-3. The conclusion critically discusses some other issues of LPC+Ch Calculus, specially that no formal semantics for it is given.In the second paper the characterization of solvability of the relational equation RoX=T, where R, X, T are fuzzy relations, X the unknown one, and o the minimum-induced composition by Sanchez, is extended to compositions induced by more general products in the general value lattice. Moreover, the procedure also applies to systemsof equations. In the third publication common features in various fuzzy logicalsystems are investigated. It turns out that adjoint couples and residuated lattices are very often present, though not always explicitly expressed. Some minor new results are also proved.The fourth study concerns Novak's paper, in which Novak introduced first-order fuzzy logic and proved, among other things, the semantico-syntactical completeness of this logic. He also demonstrated that the algebra of his logic is a generalized residuated lattice. In proving that the examination of Novak's logic can be reduced to the examination of locally finite MV-algebras.In the fifth paper a multi-valued sentential logic with values of truth in an injective MV-algebra is introduced and the axiomatizability of this logic is proved. The paper developes some ideas of Goguen and generalizes the results of Pavelka on the unit interval. Our proof for the completeness is purely algebraic. A corollary of the Completeness Theorem is that fuzzy logic on the unit interval is semantically complete if, and only if the algebra of the valuesof truth is a complete MV-algebra. The Compactness Theorem holds in our well-defined fuzzy sentential logic, while the Deduction Theorem and the Finiteness Theorem do not. Because of its generality and good-behaviour, MV-valued logic can be regarded as a mathematical basis of fuzzy reasoning. The last paper is a continuation of the fifth study. The semantics and syntax of fuzzy predicate logic with values of truth in ana injective MV-algerba are introduced, and a list of universally valid sentences is established. The system is proved to be semanticallycomplete. This proof is based on an idea utilizing some elementary properties of injective MV-algebras and MV-homomorphisms, and is purely algebraic.