26 resultados para Recyclable polymer composites
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Papper kan anses vara ett av de mest använda materialen i det dagliga livet. Tidskrifter, tidningar, böcker och diverse förpackningar är några exempel på pappersbaserade produkter. Papperets egenskaper måste anpassas till användningsändamålet. En tidskrift kräver t.ex. hög ljushet, opacitet och en slät yta hos papperet, medan dessa egenskaper är mindre viktiga för en dagstidning. Allt tryckpapper behöver vissa mekaniska egenskaper för att tåla vidarebearbetning såsom kalandrering, tryckning och vikning. Man kan bestryka papper för att förbättra dess optiska egenskaper och tryckbarhetsegenskaper. Vid bestrykning appliceras en dispersion av mineralpigment och polymerbindemedel som ett tunt lager på papperets yta. Bestrykningsskiktet kan ses som ett komplext, poröst kompositmaterial som även bidrar till papperets mekaniska egenskaper och dess processerbarhet i diverse konverteringsoperationer. Kravet på framställning av förmånligt papper med tillräckliga styrkeegenskaper ställer allt högre krav på optimeringen av pappersbestrykningsskiktets egenskaper och produktionskostnader. Målet med detta arbete var att förstå sambandet mellan pigmentbestrykningsskiktets mikrostruktur och dess makroskopiska, mekaniska egenskaper. Resultaten visar att adhesionen i gränsytan mellan pigment och bindemedel är kritisk för bestrykningsskiktets förmåga att bära mekanisk belastning. Polära vätskor är vanliga i tryckfärger och kan, eftersom de påverkar syra/bas-interaktionerna mellan pigment och latexbindemedel, försvaga denna adhesion. Resultaten tyder på att ytstyrkan hos bestruket papper kan höjas genom användning av bifunktionella dispergeringsmedel för mineralpigment. Detta medför inbesparingar i pappersproduktionen eftersom mängden bindemedel, den dyraste komponenten i bestrykningsskiktet, kan minskas.
Resumo:
Fibre-reinforced composite (FRC) root canal posts are suggested to have biomechanical benefits over traditional metallic posts, but they lack good adhesion to resin composites. The aim of this series of studies was to evaluate the adhesion of individually formed fibre-reinforced composite material to composite resin and dentin, as well as some mechanical properties. Flexural properties were evaluated and compared between individually formed FRC post material and different prefabricated posts. The depth of polymerization of the individually formed FRC post material was evaluated with IR spectrophotometry and microhardness measurements, and compared to that of resin without fibres. Bonding properties of the individually formed FRC post to resin cements and dentin were tested using Pull-out- and Push-out-force tests, evaluated with scanning electron microscopy, and compared to those of prefabricated FRC and metal posts. Load-bearing capacity and microstrain were evaluated and failure mode assessment was made on incisors restored with individually formed FRC posts of different structures and prefabricated posts. The results of these studies show that the individually polymerized and formed FRC post material had higher flexural properties compared to the commercial prefabricated FRC posts. The individually polymerized FRC material showed almost the same degree of conversion after light polymerization as monomer resin without fibres. Moreover, it was found that the individually formed FRC post material with a semiinterpenetrating polymer network (IPN) polymer matrix bonded better to composite resin luting cement, than did the prefabricated posts with a cross-linked polymer matrix. Furthermore, it was found that, contrary to the other posts, there were no adhesive failures between the individually formed FRC posts and composite resin luting cement. This suggests better interfacial adhesion of cements to these posts. Although no differences in load-bearing capacity or microstrain could be seen, the incisors restored with individually formed FRC posts with a hollow structure showed more favourable failures compared to other prefabricated posts. These studies suggest that it is possible to use individually formed FRC material with semi-IPN polymer matrix as root canal post material. They also indicate that there are benefits especially regarding the bonding properties to composite resin and dentin with this material compared to prefabricated FRC post material with a cross-linked matrix. Furthermore, clinically more repairable failures were found with this material compared to those of prefabricated posts.
Resumo:
Polymer based composite materials coated with thin layers of wear resistant materials have been proposed as replacements for steel components for certain applications with the advantage of reduced mass. Magnetron sputtered coatings can be successfully deposited on composite materials. Nevertheless there are number of issues which must be addressed such as limited temperature, which the composite can withstand because of the epoxy binder which is used, the adhesion of the coating to the composite and the limited mechanical support, the hard coating can obtain from the relatively soft epoxy. We have investigated the deposition of chromium nitride, titanium carbide and titanium doped DLC coatings on carbon fibre reinforced composites and various polymers. The adhesion of the coatings has been studied by the pull-off adhesion tester. In general, the failure mechanism has been noticed to be due to the cohesive failure for a wide range of conditions. The wear behavior of the coatings has been noticed to be complicated. Wear tests on coated composites have shown that where the reinforcing fibres are near the surface, the composite samples do not perform well due to breakage of the fibres from the polymer matrix. A fibre free surface has been noticed to improve the wear resistance.
Resumo:
The increasing demand for lightweight components has led to a huge exploitation of non-metallic materials such as polymers, fibers and elastomers in industrial and manufacturing processes. Recent trends towards cost effectiveness, weight reduction and production flexibility in industrial production and manufacturing processes has led to a growing interest in hybrid components where two or more dissimilar materials coexist to achieving specifically optimized characteristics. The importance of this research is to serve as a bridge to understanding the theories behind various joining techniques and the adaptation of the process for metal to polymer hybrid joints. Moreso, it helps companies to select the most productive and yet economical joining process for realization of lightweight metal to polymer hybrid components. This thesis is a literature review analyzing various materials that has been published on various joining methods for metal to polymer hybrid joints on the feasibility and eventual realization of the joint between these dissimilar materials. This study is aimed at theoretically evaluating the feasibility of joining processes between metal and plastic components by exploiting exhaustively joining and welding sources.
Resumo:
Fiber-reinforced composites (FRCs) are a new group of non-metallic biomaterials showing a growing popularity in many dental and medical applications. As an oral implant material, FRC is biocompatible in bone tissue environment. Soft tissue integration to FRC polymer material is unclear. This series of in vitro studies aimed at evaluating unidirectional E-glass FRC polymer in terms of mechanical, chemical, and biological properties in an attempt to develop a new non-metallic oral implant abutment alternative. Two different types of substrates were investigated: (a) Plain polymer (BisGMA 50%–TEGDMA 50%) and (b) Unidirectional FRC. The mechanical behavior of high fiber-density FRCs was assessed using a three-point bending test. Surface characterization was performed using scanning electron and spinning disk confocal microscopes. The surface wettability/energy was determined using sessile drop method. The blood response, including blood-clotting ability and platelet morphology was evaluated. Human gingival fibroblast cell responses - adhesion kinetics, adhesion strength, and proliferation activity - were studied in cell culture environment using routine test conditions. A novel tissue culture method was developed and used to evaluate porcine gingival tissue graft attachment and growth on the experimental composite implants. The analysis of the mechanical properties showed that there is a direct proportionality in the relationship between E-glass fiber volume fraction and toughness, modulus of elasticity, and load bearing capacity; however, flexural strength did not show significant improvement when high fiber-density FRC is used. FRCs showed moderate hydrophilic properties owing to the presence of exposed glass fibers on the polymer surface. Blood-clotting time was shorter on FRC substrates than on plain polymer. The FRC substrates also showed higher platelet activation state than plain polymer substrates. Fibroblast cell adhesion strength and proliferation rate were highly pronounced on FRCs. A tissue culture study revealed that gingival epithelium and connective tissue established an immediate close contact with both plain polymer and FRC implants. However, FRC seemed to guide epithelial migration outwards from the tissue/implant interface. Due to the anisotropic and hydrophilic nature of FRC, it can be concluded that this material enhances biological events related with soft tissue integration on oral implant surface.
Resumo:
The impact of a recycled mineral wool filler on the various properties of wood plastic composites was studied and the critical factors affecting the formation of the properties were determined. An estimation of the volume of mineral wool fiber waste generated in the European Union between the years 2010-2020 was presented. Furthermore, the effect of fiber pre-treatment on the properties of the wood plastic composites were studied, and the environmental performance of a wood plastic composite containing recycled mineral fibers was assessed. The results showed that the volumes of construction and demolition waste and new mineral wool produced in the European Union are growing annually, and therefore also the volumes of recycled mineral wool waste generated are increasing. The study showed that the addition of recycled mineral wool into composites can enhance some of the mechanical properties and increase the moisture resistance properties of the composites notably. Recycled mineral wool as a filler in wood plastic composites can also improve the fire resistance properties of composites, but it does not protect the polymer matrix from pyrolysis. Fiber pre-treatment with silane solution improved some of the mechanical properties, but generally the use of maleated polypropylene as the coupling agent led to better mechanical and moisture resistance properties. The environmental performance of recycled mineral wool as the filler in wood plastic composites was superior compared to glass fibers. According to the findings, recycled mineral wool fibers can provide a technically and environmentally viable alternative to the traditional inorganic filler materials used in wood plastic composites.
Resumo:
Diplomityö on tehty Exel Oyj:lle tuotekehityprojektina. Tarkoituksena on kehittää Exel Oyj:n valmistamaa komposiittipakkausrakennetta. Työssä on keskitytty valmistustekniseen selvitykseen komposiittirakenteen teollisen mittakaavan tuotannossa. Työssä selvitettiin erilaisten tuoterakenteiden valmistettavuutta sekä suoritettiin kyseisen tuotteen vaatimusprofiilin mukaisia testejä valituille rakennevaihtoehdoille. Pakkausrakenteelle asetettuja vaatimuksia ovat mm. kuljetusvaatimukset, jotka määräytyvät lähinnä NATO standardien pohjalta. Lisäksi tuotteelta vaaditaan tiettyä pitkäaikaiskestoa käsittelyn kannalta sekä soveltuvuutta vallitseviin ilmasto-olosuhteisiin. Vaatimusten mukaisia ominaisuuksia tutkittiin lisäksi mm. ballistisilla ja mekaanisilla testeillä sekä kaasuläpäisytesteillä. Testien pohjalta voidaan todeta, etteivät perinteisen alipaineinjektoidun komposiittituotteen ballistiset ominaisuudet ole riittävällä tasolla suojatuotetta ajatellen. Ballististen ja mekaanisten testien kesken havaittiin joitain yhtäläisyyksiä ja tämä vaikuttaa olevan nimenomaan mekaanisesti optimoidun komposiitin ominaisuus. DI-työn lopputuloksena on saatu selkeä kuva pakkausrakenteen materiaalivaihtoehtojen soveltuvuudesta kyseiselle tuotteelle. Lisäksi pakkausrakenteelle on ehdotettu neljä erilaista tuotesuunnitelmaan, niiden valmistustekniikat sekä lopputuotteen kustannusarviointi.
Resumo:
Työn tavoitteena oli tutkia Raman-spektrometrin soveltuvuutta muovipäällystettyjen kartonkien syvyyssuuntaisiin mittauksiin. Lisäksi pyrittiin selvittämään voidaanko kiteisyyttä nähdä Raman-laitteistolla. Työn kirjallisessa osassa on selvitetty Raman-laitteiston teknisiä ominaisuuksia. Kokeellinen osa suoritettiin Lappeenrannan teknillisessä yliopistossa Membraanitekniikan ja teknillisen polymeerikemian laboratoriossa. Työssä käytettiin Horiban Jobin Yvon¿in valmistamaa konfokaalista Raman-spektrometri-laitteistoa (LabRam). Syvyyssuuntaisissa mittauksissa käytettiin apuna motorisoitua x-, y- ja z-suuntaan liikkuvaa tasoa. Mittaukset suoritettiin pistemäisesti tietyllä askelvälillä fokusoimalla näytteen pinnasta sisällepäin. Syvyysprofilointimittaukset aloitettiinmäärittelemällä laitteiston syvyysresoluutio eri konfokaalireikäkoolla. Lisäksityössä tehtiin syvyysprofilointimittauksia sekä läpinäkyvillä monikerrosmuoveilla että muovipäällystetyillä kartongeilla. Työssä mitatut muovipäällysteet sisälsivät pääasiassa polyeteeniä. Tulokset osoittivat, että Raman laitteistolla voidaan havainnoida Raman-aktiiviset ryhmät näytteen eri kerroksista. Lisäksi polyeteenin kiteisyysaste voidaan havaita tietyillä aallonpituuksilla.
Resumo:
Viimeiset vuosikymmenet ovat olleet voimakasta kansainvälistymisen aikaa liiketoiminnassa, jonka myötä globaalista hankinnasta on tullut yhä enenevässä määrin hyvin merkittävä osa yritysten hankintastrategiaa. Kansainvälisten hankintapäätösten tekeminen vaatii yritykseltä kansainvälistymisen asteesta riippuen taloudellisia-, ajallisia- ja henkilöresursseja. Suhteessa näihin panoksiin nähden kansainvälisestä hankinnasta on saavutettavissa merkittäviä etuja, joista tärkeimpiä ovat kustannussäästöt, kilpailuetu sekä laatu- ja teknologiaedut. Projektiluontoisessa liiketoiminnassa hankintastrategian muodostamiseen ja hankintaprosesseihin vaikuttavat yksittäisten projektien ominaisuudet ja niille asetetut tavoitteet. Projektitoiminnassa hankintastrategian mukauttaminen kulloinkin vallitseviin olosuhteisiin, tavoitteisiin ja asiakkaiden tarpeisiin on projektien onnistumisen kannalta tärkeää. Tutkielman teoriaosassa tarkasteltiin projektihankintaprosesseja sekä projekteihin perustuvan liiketoiminnan ominaispiirteitä ja niiden vaikutuksia hankintaan. Teorian keskeisimpänä asiakokonaisuutena on kansain-välinen hankintastrategia osana yrityksen kokonaisvaltaista hankinta-strategiaa. Globaalia hankintastrategiaa on tarkasteltu investointien, kilpailuedun, strategian muodostuksen, motiivien ja esteiden sekä sen eri komponenttien osalta. Empiiriaosassa tutkittiin tutkielman case –yrityksen ja toimeksiantajan, Joptek Oy Compositesin hankinnan nykytilaa sekä kansainvälisen hankintastrategian eri osa-alueita. Haastattelun avulla suoritetun tutkimuksen mukaan Joptek Oy:n liiketoimintaympäristö edellyttää yrityksen entistä aktiivisempaa panostamista kansainväliseen hankintaan. Projektiliiketoiminnassa kansainvälisen hankintastrategian muodostamisessa on pyrittävä yrityksen tarpeisiin vastaaviin räätälöityihin ratkaisuihin, huomioiden erillisten projektien muutokset ja riskitekijät.
Resumo:
Bone engineering is a rapidly developing area of reconstructive medicine where bone inducing factors and/or cells are combined with a scaffold material to regenerate the structure and function of the original tissue. The aim of this study was to compare the suitability of different macroporous scaffold types for bone engineering applications. The two scaffold categories studied were a) the mechanically strong and stable titanium fiber meshes and b) the elastic and biodegradable porous polymers. Furthermore, bioactive modifications were applied to these basic scaffold types, and their effect on the osteogenic responses was evaluated in cell culture and ectopic bone formation studies. The osteogenic phenotype of cultured cell-scaffold constructs was heightened with a sol-gel derived titania coating, but not with a mixed titania-silica coating. The latter coating also resulted in delayed ectopic bone formation in bone marrow stromal cell seeded scaffolds. However, the better bone contact in early implantation times and more even bone tissue distribution at later times indicated enhanced osteoconductivity of both the coated scaffold types. Overall, the most promising bone engineering results were obtained with titania coated fiber meshes. Elastic and biodegradable poly(ε-caprolactone/D,L-lactide) based scaffolds were also developed in this study. The degradation rates of the scaffolds in vitro were governed by the hydrophilicity of the polymer matrix, and the porous architecture was controlled by the amount and type of porogen used. A continuous phase macroporosity was obtained using a novel CaCl2 • 6H2O porogen. Dynamic culture conditions increased cell invasion, but decreased cell numbers and osteogenicity, within the scaffolds. Osteogenic differentiation in static cultures and ectopic bone formation in cell seeded scaffolds were enhanced in composites, with 30 wt-% of bioactive glass filler.
Resumo:
Bioactive glasses are surface-active ceramic materials which support and accelerate bone growth in the body. During the healing of a bone fracture or a large bone defect, fixation is often needed. The aim of this thesis was to determine the dissolution behaviour and biocompatibility of a composite consisting of poly(ε-caprolactone-co-DL-lactide) and bioactive glass (S53P4). In addition the applicability as an injectable material straight to a bone defect was assessed. In in vitro tests the dissolution behaviour of plain copolymer and composites containing bioactive glass granules was evaluated, as well as surface reactivity and the material’s capability to form apatite in simulated body fluid (SBF). The human fibroblast proliferation was tested on materials in cell culture. In in vivo experiments, toxicological tests, material degradation and tissue reactions were tested both in subcutaneous space and in experimental bone defects. The composites containing bioactive glass formed a unified layer of apatite on their surface in SBF. The size and amount of glass granules affected the degradation of polymer matrix, as well the material’s surface reactivity. In cell culture on the test materials the human gingival fibroblasts proliferated and matured faster compared with control materials. In in vitro tests a connective tissue capsule was formed around the specimens, and became thinner in the course of time. Foreign body cell reactions in toxicological tests were mild. In experimental bone defects the specimens with a high concentration of small bioactive glass granules (<45 μm) formed a dense apatite surface layer that restricted the bone ingrowth to material. The range of large glass granules (90-315 μm) with high concentrations formed the best bonding with bone, but slow degradation on the copolymer restricted the bone growth only in the superficial layers. In these studies, the handling properties of the material proved to be good and tissue reactions were mild. The reactivity of bioactive glass was retained inside the copolymer matrix, thus enabling bone conductivity with composites. However, the copolymer was noticed to degradate too slowly compared with the bone healing. Therefore, the porosity of the material should be increased in order to improve tissue healing.
Resumo:
The development of load-bearing osseous implant with desired mechanical and surface properties in order to promote incorporation with bone and to eliminate risk of bone resorption and implant failure is a very challenging task. Bone formation and resoption processes depend on the mechanical environment. Certain stress/strain conditions are required to promote new bone growth and to prevent bone mass loss. Conventional metallic implants with high stiffness carry most of the load and the surrounding bone becomes virtually unloaded and inactive. Fibre-reinforced composites offer an interesting alternative to metallic implants, because their mechanical properties can be tailored to be equal to those of bone, by the careful selection of matrix polymer, type of fibres, fibre volume fraction, orientation and length. Successful load transfer at bone-implant interface requires proper fixation between the bone and implant. One promising method to promote fixation is to prepare implants with porous surface. Bone ingrowth into porous surface structure stabilises the system and improves clinical success of the implant. The experimental part of this work was focused on polymethyl methacrylate (PMMA) -based composites with dense load-bearing core and porous surface. Three-dimensionally randomly orientated chopped glass fibres were used to reinforce the composite. A method to fabricate those composites was developed by a solvent treatment technique and some characterisations concerning the functionality of the surface structure were made in vitro and in vivo. Scanning electron microscope observations revealed that the pore size and interconnective porous architecture of the surface layer of the fibre-reinforced composite (FRC) could be optimal for bone ingrowth. Microhardness measurements showed that the solvent treatment did not have an effect on the mechanical properties of the load-bearing core. A push-out test, using dental stone as a bone model material, revealed that short glass fibre-reinforced porous surface layer is strong enough to carry load. Unreacted monomers can cause the chemical necrosis of the tissue, but the levels of leachable resisidual monomers were considerably lower than those found in chemically cured fibre-reinforced dentures and in modified acrylic bone cements. Animal experiments proved that surface porous FRC implant can enhance fixation between bone and FRC. New bone ingrowth into the pores was detected and strong interlocking between bone and the implant was achieved.
Resumo:
Polymeric materials have been used in dental applications for decades. Adhesion of polymeric materials to each other and to the tooth substrate is essential to their successful use. The aim of this series of studies was two-folded. First, to improve adhesion of poly(paraphenylene) based rigid rod polymer (RRP) to other dental polymers, and secondly, to evaluate the usability of a new dentin primer system based on RRP fillers. Poly(paraphenylene) based RRP would be a tempting material for dental applications because of its good mechanical properties. To be used in dental applications, reliable adhesion between RRP and other dental polymers is required. In this series of studies, the adhesion of RRP to denture base polymer and the mechanical properties of RRP-denture base polymer-material combination were evaluated. Also adhesion of BisGMA-TEGDMA-resin to RRP was determined. Different surface treatments were tested to improve the adhesion of BisGMA-TEGDMA-resin to RRP. Results were based on three-point bending testing, Vickers surface hardness test and scanning electron microscope analysis (SEM), which showed that no reliable adhesion between RRP and denture base polymer was formed. Addition of RRP filler to denture base polymer increased surface hardness and flexural modulus but flexural strength decreased. Results from the shear bond strength test and SEM revealed that adhesion between resin and RRP was possible to improve by surface treatment with dichloromethane (DCM) based primer and a new kind of adhesive surface can be designed. The current dentin bonding agents have good immediate bond strength, but in long term the bond strength may decrease due to the detrimental effect of water and perhaps by matrix metalloproteinases. This leads to problems in longevity of restorations. Current bonding agents use organic monomers. In this series of studies, RRP filled dentin primer was tested in order to decrease the water sorption of the monomer system of the primers. The properties of new dentin primer system were evaluated in vitro by comparing it to commercial etch and rinse adhesive system. The results from the contact angle measurements and SEM showed that experimental primer with RRP reinforcement provided similar resin infiltration to dentin collagen and formed the resin-dentin interface as the control primer. Microtensile bond strength test and SEM revealed that in short term water storing, RRP increased bond strength and primer with BMEP-monomer (bis[2-(methacryloyloxy)-ethyl]phosphate) and high solvent concentration provided comparable bonding properties to the commercial control primers. In long term water storing, the high solvent-monomer concentration of the experimental primers decreased bond strength. However, in low solvent-monomer concentration groups, the long-term water storing did not decrease the bond strength despite the existence of hydrophilic monomers which were used in the system. These studies demonstrated that new dentin primer system reached the mechanical properties of current traditional etch and rinse adhesive system in short time water storing. Improved properties can be achieved by further modifications of the monomer system. Studies of the adhesion of RRP to other polymers suggest that adhesion between RRP and other dental polymers is possible to obtain by certain surface treatments.
Resumo:
The goal of this study was to find a new approach to modify chemically the properties of paper by improving fiber quality. This Master’s thesis includes the multiple polymer treatment in general and themeasurement methods with which the formation of multilayers and complexes can be noticed. The treatment by an oppositely charged dual polymer system is a good approach to increase paper strength. In this work, starch, a cationic polymer, and carboxymethyl cellulose (CMC), an anionic polymer, were used step-by-step to improve paper strength. The adsorption of cationic starch and CMC on cellulose fibers were analyzed via polyelectrolyte titration. The results showed that paper strength was enhanced slightly with a layer-by-layer assembly of the polymers. However, if the washing stage, which was required for layer-by-layer assembly, was eliminated, the starch/CMC complex was deposited on fibers more efficiently, and the paper strength was improved more significantly.