8 resultados para Receptors, Cytoplasmic and Nuclear

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer (PCa) is the most common non-cutaneous malignant disease among males in the developed countries. Radical prostatectomy (RP) is an effective therapy for most PCa patients with localized or locally invaded tumors but in some cases the cancer recurs after RP. PCa is a heterogeneous disease, which is regulated by many factors, such as androgen receptor (AR), estrogen receptors and  (ER and ER), fibroblast growth factors (FGFs) and their receptors (FGFRs). In this study, the role of ERβ, FGF8, FGF13 and FGFRL1 was investigated in PCa. Previous studies have suggested that ER is protective against PCa whereas FGF8 has been shown to induce PCa in transgenic mice. FGF13 and FGFRL1 are poorly understood members of the FGF and FGFR families, respectively. Transgenic mouse models were used to investigate the ability of inactivated ERβ to facilitate FGF8-induced prostate tumorigenesis. Human PCa tissue microarrays (TMAs) were used to study the expression pattern of FGF13 and FGFRL1 in PCa and the results were correlated to corresponding patient data. The targets and biological functions of FGF13 and FGFRL1 were characterized using experimental in vivo and in vitro models. The results show that deficiency of ERβ, which had been expected to have tumor suppressing capacity, seemed to influence epithelial differentiation but did not affect FGF8-induced prostate tumorigenesis. Analysis of the TMAs showed increased expression of FGF13 in PCa. The level of cytoplasmic FGF13 was associated with the PCa biochemical recurrence (BCR), demonstrated by increasing serum PSA value, and was able to act as an independent prognostic biomarker for PCa patients after RP. Expression of FGFRL1, the most recently identified FGFR, was also elevated in PCa. Cytoplasmic and nuclear FGFRL1 was associated with high Gleason score and Ki67 level whereas the opposite was true for the cell membrane FGFRL1. Silencing of FGFRL1 in PC-3M cells led to a strongly decreased growth rate of these cells as xenografts in nude mice and the experiments with PCa cell lines showed that FGFRL1 is able to modulate the FGF2- and FGF8-induced signaling pathways. The next generation sequencing (NGS) experiments with FGFRL1-silenced PC-3M cells revealed candidates for FGFRL1 target genes. In summary, these studies provide new data on the FGF/FGFR signaling pathways in normal and malignant prostate and suggest a potential role for FGF13 and FGFRL1 as novel prognostic markers for PCa patients. Keywords: FGF8, FGF13, FGFRL1, ERβ, prostate cancer, prognostic marker

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human chorionic gonadotropin (hCG) and luteinizing hormone (LH) are structurally and functionally similar glycoprotein hormones acting through the same luteinizing hormone chorionic gonadotropin receptor (LHCGR). The functions of LH in reproduction and hCG in pregnancy are well known. Recently, the expression of LHCGR has been found in many nongonadal tissues and cancers, and this has raised the question of whether LH/hCG could affect the function or tumorigenesis of these nongonadal tissues. We have also previously generated an hCG expressing mouse model presenting nongonadal phenotypes. Using this model it is possible to improve our understanding of nongonadal action of highly elevated LH/hCG. In the current study, we analyzed the effect of moderately and highly elevated hCG levels on male reproductive development and function. The main finding was the appearance of fetal Leydig cell (FLC) adenomas in prepubertal males. However, the development and differentiation of FLCs were not significantly affected. We also show that the function of hCG is different in FLCs and in adult Leydig cells (ALC), because in the latter cells hCG was not able to induce tumorigenesis. In FLCs, LHCGR is not desensitized or downregulated upon ligand binding. In this study, we found that the testicular expression of two G protein-coupled receptor kinases responsible for receptor desensitization or downregulation is increased in adult testis. Results suggest that the lack of LHCGR desensitization or downregulation in FLCs protect testosterone (Te) synthesis, but also predispose FLCs for LH/hCG induced adenomas. However, all the hCG induced nongonadal changes observed in male mice were possible to explain by the elevated Te level found in these males. Our findings indicate that the direct nongonadal effects of elevated LH/hCG in males are not pathophysiologically significant. In female mice, we showed that an elevated hCG level was able to induce gonadal tumorigenesis. hCG also induced the formation of pituitary adenomas (PA), but the mechanism was indirect. Furthermore, we found two new potential risk factors and a novel hormonally induced mechanism for PAs. Increased progesterone (P) levels in the presence of physiological estradiol (E2) levels induced the formation of PAs in female mice. E2 and P induced the expression and nuclear localization of a known cell-cycle regulator, cyclin D1. A calorie restricted diet was also able to prevent the formation of PAs, suggesting that obesity is able to promote the formation of PAs. Hormone replacement therapy after gonadectomy and hormone antagonist therapy showed that the nongonadal phenotypes observed in hCG expressing female mice were due to ovarian hyperstimulation. A slight adrenal phenotype was evident even after gonadectomy in hCG expressing females, but E2 and P replacement was able to induce a similar phenotype in WT females without elevated LH/hCG action. In conclusion, we showed that the direct effects of elevated hCG/LH action are limited only to the gonads of both sexes. The nongonadal phenotypes observed in hCG expressing mice were due to the indirect, gonadal hormone mediated effects of elevated hCG. Therefore, the gonads are the only physiologically significant direct targets of LHCGR signalling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

B lymphocytes constitute a key branch of adaptive immunity by providing specificity to recognize a vast variety of antigens by B cell antigen receptors (BCR) and secreted antibodies. Antigen recognition activates the cells and can produce antibody secreting plasma cells via germinal center reaction that leads to the maturation of antigen recognition affinity and switching of antibody effector class. The specificity of antigen recognition is achieved through a multistep developmental pathway that is organized by interplay of transcription factors and signals through BCR. Lymphoid malignancies arise from different stages of development in abnormal function of transcriptional regulation. To understand the B cell development and the function of B cells, a thorough understanding of the regulation of gene expression is important. The transcription factors of the Ikaros family and Bcl6 are frequently associated with lymphoma generation. The aim of this study was to reveal the targets of Ikaros, Helios and Bcl6 mediated gene regulation and to find out the function of Ikaros and Helios in B cells. This study uses gene targeted DT40 B cell lines and establishes a role for Ikaros family factors Ikaros and Helios in the regulation of BCR signaling that is important at developmental checkpoints, for cell survival and in activation. Ikaros and Helios had opposing roles in the regulation of BCR signals. Ikaros was found to directly repress the SHIP gene that encodes a signaling lipid-metabolizing enzyme, whereas Helios had activating effect on SHIP expression. The findings demonstrate a balancing function for these two Ikaros family transcription factors in the regulation of BCR signaling as well as in the regulation of gene expression. Bcl6 was found to repress plasma cell gene expression program while maintaining gene expression profile of B cells. Analysis of direct Bcl6 target genes suggested novel mechanisms for Bcl6-mediated suppression of plasma cell differentiation and promoting germinal center phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrin family of transmembrane receptors are important for cell-matrix adhesion and signal transmission to the interior of the cell. Integrins are essential for many physiological processes and defective integrin function can consequently result in a multitude of diseases, including cancer. Integrin traffic is needed for completion of cytokinesis and cell division failure has been proposed to be an early event in the formation of chromosomally aberrant and transformed cells. Impaired integrin traffic and changes in integrin expression are known to promote invasion of malignant cells. However, the direct roles of impaired integrin traffic in tumorigenesis and increased integrin expression in oncogene driven invasion have not been examined. In this study we have investigated both of these aspects. We found that cells with reduced integrin endocytosis become binucleate and subsequently aneuploid. These aneuploid cells display characteristics of transformed cells; they are anchorage-independent, resistant to apoptosis and invasive in vitro. Importantly, subcutaneous injection of the aneuploid cells into athymic nude mice produced highly malignant tumors. Through gene expression profiling and analysis of integrin-triggered signaling pathways we have identified several molecules involved in the malignancy of these cells, including Src kinase and the transcription factor Twist2. Thus, even though chromosomal aberrations are associated with reduced cell fitness, we show that aneuploidy can facilitate tumor evolution and selection of transformed cells. Invasion and metastasis are the primary reason for deaths caused by cancer and the molecular pathways responsible for invasion are therefore attractive targets in cancer therapy. In addition to integrins, another major family of adhesion receptors are the proteoglycans syndecans. Integrins and syndecans are known to signal in a synergistic manner in controlling cell adhesion on 2D matrixes. Here we explored the role of syndecans as α2β1 integrin co-receptors in 3D collagen. We show that in breast cancer cells harbouring mutant K-Ras, increased levels of integrins, their co-receptors syndecans and matrix cleaving proteases are necessary for the invasive phenotype of these cells. Together, these findings increase our knowledge of the complicated changes that occur during tumorigenesis and the pathways that control the ability of cancer cells to invade and metastasize.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the diagnosis delay and its impact on the stage of disease. The study also evaluated a nuclear DNA content, immunohistochemical expression of Ki-67 and bcl-2, and the correlation of these biological features with the clinicopathological features and patient outcome. 200 Libyan women, diagnosed during 2008–2009 were interviewed about the period from the first symptoms to the final histological diagnosis of breast cancer. Also retrospective preclinical and clinical data were collected from medical records on a form (questionnaire) in association with the interview. Tumor material of the patients was collected and nuclear DNA content analysed using DNA image cytometry. The expression of Ki-67 and bcl-2 were assessed using immunohistochemistry (IHC). The studies described in this thesis show that the median of diagnosis time for women with breast cancer was 7.5 months and 56% of patients were diagnosed within a period longer than 6 months. Inappropriate reassurance that the lump was benign was an important reason for prolongation of the diagnosis time. Diagnosis delay was also associated with initial breast symptom(s) that did not include a lump, old age, illiteracy, and history of benign fibrocystic disease. The patients who showed diagnosis delay had bigger tumour size (p<0.0001), positive lymph nodes (p<0.0001), and high incidence of late clinical stages (p<0.0001). Biologically, 82.7% of tumors were aneuploid and 17.3% were diploid. The median SPF of tumors was 11% while the median positivity of Ki-67 was 27.5%. High Ki-67 expression was found in 76% of patients, and high SPF values in 56% of patients. Positive bcl-2 expression was found in 62.4% of tumors. 72.2% of the bcl-2 positive samples were ER-positive. Patients who had tumor with DNA aneuploidy, high proliferative activity and negative bcl-2 expression were associated with a high grade of malignancy and short survival. The SPF value is useful cell proliferation marker in assessing prognosis, and the decision cut point of 11% for SPF in the Libyan material was clearly significant (p<0.0001). Bcl-2 is a powerful prognosticator and an independent predictor of breast cancer outcome in the Libyan material (p<0.0001). Libyan breast cancer was investigated in these studies from two different aspects: health services and biology. The results show that diagnosis delay is a very serious problem in Libya and is associated with complex interactions between many factors leading to advanced stages, and potentially to high mortality. Cytometric DNA variables, proliferative markers (Ki-67 and SPF), and oncoprotein bcl-2 negativity reflect the aggressive behavior of Libyan breast cancer and could be used with traditional factors to predict the outcome of individual patients, and to select appropriate therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focuses on flavonoids, a subgroup of phenolic compounds produced by plants, and how they affect the herbivorous larvae of lepidopterans and sawflies. The first part of the literature review examines different techniques to analyze the chemical structures of flavonoids and their concentrations in biological samples. These techniques include, for example, ultraviolet-visible spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. The second part of the literature review studies how phenolic compounds function in the metabolism of larvae. The harmful oxidation reactions of phenolic compounds in insect guts are also emphasized. In addition to the negative effects, many insect species have evolved the use of phenolic compounds for their own benefit. In the experimental part of the thesis, high concentrations of complex flavonoid oligoglycosides were found in the hemolymph (the circulatory fluid of insects) of birch and pine sawflies. The larvae produced these compounds from simple flavonoid precursors present in the birch leaves and pine needles. Flavonoid glycosides were also found in the cocoon walls of sawflies, which suggested that flavonoids were used in the construction of cocoons. The second part of the experimental work studied the modifications of phenolic compounds in conditions that mimicked the alkaline guts of lepidopteran larvae. It was found that the 24 plant species studied and their individual phenolic compounds had variable capacities to function as oxidative defenses in alkaline conditions. The excrements of lepidopteran and sawfly species were studied to see how different types of phenolics were processed by the larvae. These results suggested that phenolic compounds were oxidized, hydrolyzed, or modified in other ways during their passage through the digestive tract of the larvae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently widely accepted consensus is that greenhouse gas emissions produced by the mankind have to be reduced in order to avoid further global warming. The European Union has set a variety of CO2 reduction and renewable generation targets for its member states. The current energy system in the Nordic countries is one of the most carbon free in the world, but the aim is to achieve a fully carbon neutral energy system. The objective of this thesis is to consider the role of nuclear power in the future energy system. Nuclear power is a low carbon energy technology because it produces virtually no air pollutants during operation. In this respect, nuclear power is suitable for a carbon free energy system. In this master's thesis, the basic characteristics of nuclear power are presented and compared to fossil fuelled and renewable generation. Nordic energy systems and different scenarios in 2050 are modelled. Using models and information about the basic characteristics of nuclear power, an opinion is formed about its role in the future energy system in Nordic countries. The model shows that it is possible to form a carbon free Nordic energy system. Nordic countries benefit from large hydropower capacity which helps to offset fluctuating nature of wind power. Biomass fuelled generation and nuclear power provide stable and predictable electricity throughout the year. Nuclear power offers better energy security and security of supply than fossil fuelled generation and it is competitive with other low carbon technologies.