3 resultados para Prone to accidents

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many-core systems are emerging from the need of more computational power and power efficiency. However there are many issues which still revolve around the many-core systems. These systems need specialized software before they can be fully utilized and the hardware itself may differ from the conventional computational systems. To gain efficiency from many-core system, programs need to be parallelized. In many-core systems the cores are small and less powerful than cores used in traditional computing, so running a conventional program is not an efficient option. Also in Network-on-Chip based processors the network might get congested and the cores might work at different speeds. In this thesis is, a dynamic load balancing method is proposed and tested on Intel 48-core Single-Chip Cloud Computer by parallelizing a fault simulator. The maximum speedup is difficult to obtain due to severe bottlenecks in the system. In order to exploit all the available parallelism of the Single-Chip Cloud Computer, a runtime approach capable of dynamically balancing the load during the fault simulation process is used. The proposed dynamic fault simulation approach on the Single-Chip Cloud Computer shows up to 45X speedup compared to a serial fault simulation approach. Many-core systems can draw enormous amounts of power, and if this power is not controlled properly, the system might get damaged. One way to manage power is to set power budget for the system. But if this power is drawn by just few cores of the many, these few cores get extremely hot and might get damaged. Due to increase in power density multiple thermal sensors are deployed on the chip area to provide realtime temperature feedback for thermal management techniques. Thermal sensor accuracy is extremely prone to intra-die process variation and aging phenomena. These factors lead to a situation where thermal sensor values drift from the nominal values. This necessitates efficient calibration techniques to be applied before the sensor values are used. In addition, in modern many-core systems cores have support for dynamic voltage and frequency scaling. Thermal sensors located on cores are sensitive to the core's current voltage level, meaning that dedicated calibration is needed for each voltage level. In this thesis a general-purpose software-based auto-calibration approach is also proposed for thermal sensors to calibrate thermal sensors on different range of voltages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modern automobiles are no longer just mechanical tools. The electronics and computing services they are shipping with are making them not less than a computer. They are massive kinetic devices with sophisticated computing power. Most of the modern vehicles are made with the added connectivity in mind which may be vulnerable to outside attack. Researchers have shown that it is possible to infiltrate into a vehicle’s internal system remotely and control the physical entities such as steering and brakes. It is quite possible to experience such attacks on a moving vehicle and unable to use the controls. These massive connected computers can be life threatening as they are related to everyday lifestyle. First part of this research studied the attack surfaces in the automotive cybersecurity domain. It also illustrated the attack methods and capabilities of the damages. Online survey has been deployed as data collection tool to learn about the consumers’ usage of such vulnerable automotive services. The second part of the research portrayed the consumers’ privacy in automotive world. It has been found that almost hundred percent of modern vehicles has the capabilities to send vehicle diagnostic data as well as user generated data to their manufacturers, and almost thirty five percent automotive companies are collecting them already. Internet privacy has been studies before in many related domain but no privacy scale were matched for automotive consumers. It created the research gap and motivation for this thesis. A study has been performed to use well established consumers privacy scale – IUIPC to match with the automotive consumers’ privacy situation. Hypotheses were developed based on the IUIPC model for internet consumers’ privacy and they were studied by the finding from the data collection methods. Based on the key findings of the research, all the hypotheses were accepted and hence it is found that automotive consumers’ privacy did follow the IUIPC model under certain conditions. It is also found that a majority of automotive consumers use the services and devices that are vulnerable and prone to cyber-attacks. It is also established that there is a market for automotive cybersecurity services and consumers are willing to pay certain fees to avail that.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Relationship between organisms within an ecosystem is one of the main focuses in the study of ecology and evolution. For instance, host-parasite interactions have long been under close interest of ecology, evolutionary biology and conservation science, due to great variety of strategies and interaction outcomes. The monogenean ecto-parasites consist of a significant portion of flatworms. Gyrodactylus salaris is a monogenean freshwater ecto-parasite of Atlantic salmon (Salmo salar) whose damage can make fish to be prone to further bacterial and fungal infections. G. salaris is the only one parasite whose genome has been studied so far. The RNA-seq data analyzed in this thesis has already been annotated by using LAST. The RNA-seq data was obtained from Illumina sequencing i.e. yielded reads were assembled into 15777 transcripts. Last resulted in annotation of 46% transcripts and remaining were left unknown. This thesis work was started with whole data and annotation process was continued by the use of PANNZER, CDD and InterProScan. This annotation resulted in 56% successfully annotated sequences having parasite specific proteins identified. This thesis represents the first of Monogenean transcriptomic information which gives an important source for further research on this specie. Additionally, comparison of annotation methods interestingly revealed that description and domain based methods perform better than simple similarity search methods. Therefore it is more likely to suggest the use of these tools and databases for functional annotation. These results also emphasize the need for use of multiple methods and databases. It also highlights the need of more genomic information related to G. salaris.