3 resultados para Process modeling

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrometallurgical process modeling is the main objective of this Master’s thesis work. Three different leaching processes namely, high pressure pyrite oxidation, direct oxidation zinc concentrate (sphalerite) leaching and gold chloride leaching using rotating disc electrode (RDE) are modeled and simulated using gPROMS process simulation program in order to evaluate its model building capabilities. The leaching mechanism in each case is described in terms of a shrinking core model. The mathematical modeling carried out included process model development based on available literature, estimation of reaction kinetic parameters and assessment of the model reliability by checking the goodness fit and checking the cross correlation between the estimated parameters through the use of correlation matrices. The estimated parameter values in each case were compared with those obtained using the Modest simulation program. Further, based on the estimated reaction kinetic parameters, reactor simulation and modeling for direct oxidation zinc concentrate (sphalerite) leaching is carried out in Aspen Plus V8.6. The zinc leaching autoclave is based on Cominco reactor configuration and is modeled as a series of continuous stirred reactors (CSTRs). The sphalerite conversion is calculated and a sensitivity analysis is carried out so to determine the optimum reactor operation temperature and optimum oxygen mass flow rate. In this way, the implementation of reaction kinetic models into the process flowsheet simulation environment has been demonstrated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The goal was to understand, document and module how information is currently flown internally in the largest dairy organization in Finland. The organization has undergone radical changes in the past years due to economic sanctions between European Union and Russia. Therefore, organization’s ultimate goal would be to continue its growth through managing its sales process more efficiently. The thesis consists of a literature review and an empirical part. The literature review consists of knowledge management and process modeling theories. First, the knowledge management discusses how data, information and knowledge are exchanged in the process. Knowledge management models and processes are describing how knowledge is created, exchanged and can be managed in an organization. Secondly, the process modeling is responsible for visualizing information flow through discussion of modeling approaches and presenting different methods and techniques. Finally, process’ documentation procedure was presented. In the end, a constructive research approach was used in order to identify process’ related problems and bottlenecks. Therefore, possible solutions were presented based on this approach. The empirical part of the study is based on 37 interviews, organization’s internal data sources and theoretical framework. The acquired data and information were used to document and to module the sales process in question with a flowchart diagram. Results are conducted through construction of the flowchart diagram and analysis of the documentation. In fact, answers to research questions are derived from empirical and theoretical parts. In the end, 14 problems and two bottlenecks were identified in the process. The most important problems are related to approach and/or standardization for information sharing, insufficient information technology tool utilization and lack of systematization of documentation. The bottlenecks are caused by the alarming amount of changes to files after their deadlines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The blast furnace is the main ironmaking production unit in the world which converts iron ore with coke and hot blast into liquid iron, hot metal, which is used for steelmaking. The furnace acts as a counter-current reactor charged with layers of raw material of very different gas permeability. The arrangement of these layers, or burden distribution, is the most important factor influencing the gas flow conditions inside the furnace, which dictate the efficiency of the heat transfer and reduction processes. For proper control the furnace operators should know the overall conditions in the furnace and be able to predict how control actions affect the state of the furnace. However, due to high temperatures and pressure, hostile atmosphere and mechanical wear it is very difficult to measure internal variables. Instead, the operators have to rely extensively on measurements obtained at the boundaries of the furnace and make their decisions on the basis of heuristic rules and results from mathematical models. It is particularly difficult to understand the distribution of the burden materials because of the complex behavior of the particulate materials during charging. The aim of this doctoral thesis is to clarify some aspects of burden distribution and to develop tools that can aid the decision-making process in the control of the burden and gas distribution in the blast furnace. A relatively simple mathematical model was created for simulation of the distribution of the burden material with a bell-less top charging system. The model developed is fast and it can therefore be used by the operators to gain understanding of the formation of layers for different charging programs. The results were verified by findings from charging experiments using a small-scale charging rig at the laboratory. A basic gas flow model was developed which utilized the results of the burden distribution model to estimate the gas permeability of the upper part of the blast furnace. This combined formulation for gas and burden distribution made it possible to implement a search for the best combination of charging parameters to achieve a target gas temperature distribution. As this mathematical task is discontinuous and non-differentiable, a genetic algorithm was applied to solve the optimization problem. It was demonstrated that the method was able to evolve optimal charging programs that fulfilled the target conditions. Even though the burden distribution model provides information about the layer structure, it neglects some effects which influence the results, such as mixed layer formation and coke collapse. A more accurate numerical method for studying particle mechanics, the Discrete Element Method (DEM), was used to study some aspects of the charging process more closely. Model charging programs were simulated using DEM and compared with the results from small-scale experiments. The mixed layer was defined and the voidage of mixed layers was estimated. The mixed layer was found to have about 12% less voidage than layers of the individual burden components. Finally, a model for predicting the extent of coke collapse when heavier pellets are charged over a layer of lighter coke particles was formulated based on slope stability theory, and was used to update the coke layer distribution after charging in the mathematical model. In designing this revision, results from DEM simulations and charging experiments for some charging programs were used. The findings from the coke collapse analysis can be used to design charging programs with more stable coke layers.