21 resultados para Principal component analysis (PCA)
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Due to the large number of characteristics, there is a need to extract the most relevant characteristicsfrom the input data, so that the amount of information lost in this way is minimal, and the classification realized with the projected data set is relevant with respect to the original data. In order to achieve this feature extraction, different statistical techniques, as well as the principal components analysis (PCA) may be used. This thesis describes an extension of principal components analysis (PCA) allowing the extraction ofa finite number of relevant features from high-dimensional fuzzy data and noisy data. PCA finds linear combinations of the original measurement variables that describe the significant variation in the data. The comparisonof the two proposed methods was produced by using postoperative patient data. Experiment results demonstrate the ability of using the proposed two methods in complex data. Fuzzy PCA was used in the classificationproblem. The classification was applied by using the similarity classifier algorithm where total similarity measures weights are optimized with differential evolution algorithm. This thesis presents the comparison of the classification results based on the obtained data from the fuzzy PCA.
Resumo:
The uncertainty of any analytical determination depends on analysis and sampling. Uncertainty arising from sampling is usually not controlled and methods for its evaluation are still little known. Pierre Gy’s sampling theory is currently the most complete theory about samplingwhich also takes the design of the sampling equipment into account. Guides dealing with the practical issues of sampling also exist, published by international organizations such as EURACHEM, IUPAC (International Union of Pure and Applied Chemistry) and ISO (International Organization for Standardization). In this work Gy’s sampling theory was applied to several cases, including the analysis of chromite concentration estimated on SEM (Scanning Electron Microscope) images and estimation of the total uncertainty of a drug dissolution procedure. The results clearly show that Gy’s sampling theory can be utilized in both of the above-mentioned cases and that the uncertainties achieved are reliable. Variographic experiments introduced in Gy’s sampling theory are beneficially applied in analyzing the uncertainty of auto-correlated data sets such as industrial process data and environmental discharges. The periodic behaviour of these kinds of processes can be observed by variographic analysis as well as with fast Fourier transformation and auto-correlation functions. With variographic analysis, the uncertainties are estimated as a function of the sampling interval. This is advantageous when environmental data or process data are analyzed as it can be easily estimated how the sampling interval is affecting the overall uncertainty. If the sampling frequency is too high, unnecessary resources will be used. On the other hand, if a frequency is too low, the uncertainty of the determination may be unacceptably high. Variographic methods can also be utilized to estimate the uncertainty of spectral data produced by modern instruments. Since spectral data are multivariate, methods such as Principal Component Analysis (PCA) are needed when the data are analyzed. Optimization of a sampling plan increases the reliability of the analytical process which might at the end have beneficial effects on the economics of chemical analysis,
Resumo:
Identification of low-dimensional structures and main sources of variation from multivariate data are fundamental tasks in data analysis. Many methods aimed at these tasks involve solution of an optimization problem. Thus, the objective of this thesis is to develop computationally efficient and theoretically justified methods for solving such problems. Most of the thesis is based on a statistical model, where ridges of the density estimated from the data are considered as relevant features. Finding ridges, that are generalized maxima, necessitates development of advanced optimization methods. An efficient and convergent trust region Newton method for projecting a point onto a ridge of the underlying density is developed for this purpose. The method is utilized in a differential equation-based approach for tracing ridges and computing projection coordinates along them. The density estimation is done nonparametrically by using Gaussian kernels. This allows application of ridge-based methods with only mild assumptions on the underlying structure of the data. The statistical model and the ridge finding methods are adapted to two different applications. The first one is extraction of curvilinear structures from noisy data mixed with background clutter. The second one is a novel nonlinear generalization of principal component analysis (PCA) and its extension to time series data. The methods have a wide range of potential applications, where most of the earlier approaches are inadequate. Examples include identification of faults from seismic data and identification of filaments from cosmological data. Applicability of the nonlinear PCA to climate analysis and reconstruction of periodic patterns from noisy time series data are also demonstrated. Other contributions of the thesis include development of an efficient semidefinite optimization method for embedding graphs into the Euclidean space. The method produces structure-preserving embeddings that maximize interpoint distances. It is primarily developed for dimensionality reduction, but has also potential applications in graph theory and various areas of physics, chemistry and engineering. Asymptotic behaviour of ridges and maxima of Gaussian kernel densities is also investigated when the kernel bandwidth approaches infinity. The results are applied to the nonlinear PCA and to finding significant maxima of such densities, which is a typical problem in visual object tracking.
Resumo:
Tässä diplomityössä tutkitaan tekniikoita, joillavesileima lisätään spektrikuvaan, ja menetelmiä, joilla vesileimat tunnistetaanja havaitaan spektrikuvista. PCA (Principal Component Analysis) -algoritmia käyttäen alkuperäisten kuvien spektriulottuvuutta vähennettiin. Vesileiman lisääminen spektrikuvaan suoritettiin muunnosavaruudessa. Ehdotetun mallin mukaisesti muunnosavaruuden komponentti korvattiin vesileiman ja toisen muunnosavaruuden komponentin lineaarikombinaatiolla. Lisäyksessä käytettävää parametrijoukkoa tutkittiin. Vesileimattujen kuvien laatu mitattiin ja analysoitiin. Suositukset vesileiman lisäykseen esitettiin. Useita menetelmiä käytettiin vesileimojen tunnistamiseen ja tunnistamisen tulokset analysoitiin. Vesileimojen kyky sietää erilaisia hyökkäyksiä tarkistettiin. Diplomityössä suoritettiin joukko havaitsemis-kokeita ottamalla huomioon vesileiman lisäyksessä käytetyt parametrit. ICA (Independent Component Analysis) -menetelmää pidetään yhtenä mahdollisena vaihtoehtona vesileiman havaitsemisessa.
Resumo:
Väitöstutkimuksessa on tarkasteltuinfrapunaspektroskopian ja monimuuttujaisten aineistonkäsittelymenetelmien soveltamista kiteytysprosessin monitoroinnissa ja kidemäisen tuotteen analysoinnissa. Parhaillaan kiteytysprosessitutkimuksessa maailmanlaajuisesti tutkitaan intensiivisesti erilaisten mittausmenetelmien soveltamista kiteytysprosessin ilmiöidenjatkuvaan mittaamiseen niin nestefaasista kuin syntyvistä kiteistäkin. Lisäksi tuotteen karakterisointi on välttämätöntä tuotteen laadun varmistamiseksi. Erityisesti lääkeaineiden valmistuksessa kiinnostusta tämäntyyppiseen tutkimukseen edistää Yhdysvaltain elintarvike- ja lääkeaineviraston (FDA) prosessianalyyttisiintekniikoihin (PAT) liittyvä ohjeistus, jossa määritellään laajasti vaatimukset lääkeaineiden valmistuksessa ja tuotteen karakterisoinnissa tarvittaville mittauksille turvallisten valmistusprosessien takaamiseksi. Jäähdytyskiteytyson erityisesti lääketeollisuudessa paljon käytetty erotusmenetelmä kiinteän raakatuotteen puhdistuksessa. Menetelmässä puhdistettava kiinteä raaka-aine liuotetaan sopivaan liuottimeen suhteellisen korkeassa lämpötilassa. Puhdistettavan aineen liukoisuus käytettävään liuottimeen laskee lämpötilan laskiessa, joten systeemiä jäähdytettäessä liuenneen aineen konsentraatio prosessissa ylittää liukoisuuskonsentraation. Tällaiseen ylikylläiseen systeemiin pyrkii muodostumaan uusia kiteitä tai olemassa olevat kiteet kasvavat. Ylikylläisyys on yksi tärkeimmistä kidetuotteen laatuun vaikuttavista tekijöistä. Jäähdytyskiteytyksessä syntyvän tuotteen ominaisuuksiin voidaan vaikuttaa mm. liuottimen valinnalla, jäähdytyprofiililla ja sekoituksella. Lisäksi kiteytysprosessin käynnistymisvaihe eli ensimmäisten kiteiden muodostumishetki vaikuttaa tuotteen ominaisuuksiin. Kidemäisen tuotteen laatu määritellään kiteiden keskimääräisen koon, koko- ja muotojakaumansekä puhtauden perusteella. Lääketeollisuudessa on usein vaatimuksena, että tuote edustaa tiettyä polymorfimuotoa, mikä tarkoittaa molekyylien kykyä järjestäytyä kidehilassa usealla eri tavalla. Edellä mainitut ominaisuudet vaikuttavat tuotteen jatkokäsiteltävyyteen, kuten mm. suodattuvuuteen, jauhautuvuuteen ja tabletoitavuuteen. Lisäksi polymorfiamuodolla on vaikutusta moniin tuotteen käytettävyysominaisuuksiin, kuten esim. lääkeaineen liukenemisnopeuteen elimistössä. Väitöstyössä on tutkittu sulfatiatsolin jäähdytyskiteytystä käyttäen useita eri liuotinseoksia ja jäähdytysprofiileja sekä tarkasteltu näiden tekijöiden vaikutustatuotteen laatuominaisuuksiin. Infrapunaspektroskopia on laajalti kemian alan tutkimuksissa sovellettava menetelmä. Siinä mitataan tutkittavan näytteenmolekyylien värähtelyjen aiheuttamia spektrimuutoksia IR alueella. Tutkimuksessa prosessinaikaiset mittaukset toteutettiin in-situ reaktoriin sijoitettavalla uppoanturilla käyttäen vaimennettuun kokonaisheijastukseen (ATR) perustuvaa Fourier muunnettua infrapuna (FTIR) spektroskopiaa. Jauhemaiset näytteet mitattiin off-line diffuusioheijastukseen (DRIFT) perustuvalla FTIR spektroskopialla. Monimuuttujamenetelmillä (kemometria) voidaan useita satoja, jopa tuhansia muuttujia käsittävä spektridata jalostaa kvalitatiiviseksi (laadulliseksi) tai kvantitatiiviseksi (määrälliseksi) prosessia kuvaavaksi informaatioksi. Väitöstyössä tarkasteltiin laajasti erilaisten monimuuttujamenetelmien soveltamista mahdollisimman monipuolisen prosessia kuvaavan informaation saamiseksi mitatusta spektriaineistosta. Väitöstyön tuloksena on ehdotettu kalibrointirutiini liuenneen aineen konsentraation ja edelleen ylikylläisyystason mittaamiseksi kiteytysprosessin aikana. Kalibrointirutiinin kehittämiseen kuuluivat aineiston hyvyyden tarkastelumenetelmät, aineiston esikäsittelymenetelmät, varsinainen kalibrointimallinnus sekä mallin validointi. Näin saadaan reaaliaikaista informaatiota kiteytysprosessin ajavasta voimasta, mikä edelleen parantaa kyseisen prosessin tuntemusta ja hallittavuutta. Ylikylläisyystason vaikutuksia syntyvän kidetuotteen laatuun seurattiin usein kiteytyskokein. Työssä on esitetty myös monimuuttujaiseen tilastolliseen prosessinseurantaan perustuva menetelmä, jolla voidaan ennustaa spontaania primääristä ytimenmuodostumishetkeä mitatusta spektriaineistosta sekä mahdollisesti päätellä ydintymisessä syntyvä polymorfimuoto. Ehdotettua menetelmää hyödyntäen voidaan paitsi ennakoida kideytimien muodostumista myös havaita mahdolliset häiriötilanteet kiteytysprosessin alkuhetkillä. Syntyvää polymorfimuotoa ennustamalla voidaan havaita ei-toivotun polymorfin ydintyminen,ja mahdollisesti muuttaa kiteytyksen ohjausta halutun polymorfimuodon saavuttamiseksi. Monimuuttujamenetelmiä sovellettiin myös kiteytyspanosten välisen vaihtelun määrittämiseen mitatusta spektriaineistosta. Tämäntyyppisestä analyysistä saatua informaatiota voidaan hyödyntää kiteytysprosessien suunnittelussa ja optimoinnissa. Väitöstyössä testattiin IR spektroskopian ja erilaisten monimuuttujamenetelmien soveltuvuutta kidetuotteen polymorfikoostumuksen nopeaan määritykseen. Jauhemaisten näytteiden luokittelu eri polymorfeja sisältäviin näytteisiin voitiin tehdä käyttäen tarkoitukseen soveltuvia monimuuttujaisia luokittelumenetelmiä. Tämä tarjoaa nopean menetelmän jauhemaisen näytteen polymorfikoostumuksen karkeaan arviointiin, eli siihen mitä yksittäistä polymorfia kyseinen näyte pääasiassa sisältää. Varsinainen kvantitatiivinen analyysi, eli sen selvittäminen paljonko esim. painoprosentteina näyte sisältää eri polymorfeja, vaatii kaikki polymorfit kattavan fysikaalisen kalibrointisarjan, mikä voi olla puhtaiden polymorfien huonon saatavuuden takia hankalaa.
Resumo:
Technological progress has made a huge amount of data available at increasing spatial and spectral resolutions. Therefore, the compression of hyperspectral data is an area of active research. In somefields, the original quality of a hyperspectral image cannot be compromised andin these cases, lossless compression is mandatory. The main goal of this thesisis to provide improved methods for the lossless compression of hyperspectral images. Both prediction- and transform-based methods are studied. Two kinds of prediction based methods are being studied. In the first method the spectra of a hyperspectral image are first clustered and and an optimized linear predictor is calculated for each cluster. In the second prediction method linear prediction coefficients are not fixed but are recalculated for each pixel. A parallel implementation of the above-mentioned linear prediction method is also presented. Also,two transform-based methods are being presented. Vector Quantization (VQ) was used together with a new coding of the residual image. In addition we have developed a new back end for a compression method utilizing Principal Component Analysis (PCA) and Integer Wavelet Transform (IWT). The performance of the compressionmethods are compared to that of other compression methods. The results show that the proposed linear prediction methods outperform the previous methods. In addition, a novel fast exact nearest-neighbor search method is developed. The search method is used to speed up the Linde-Buzo-Gray (LBG) clustering method.
Resumo:
This work is devoted to the analysis of signal variation of the Cross-Direction and Machine-Direction measurements from paper web. The data that we possess comes from the real paper machine. Goal of the work is to reconstruct the basis weight structure of the paper and to predict its behaviour to the future. The resulting synthetic data is needed for simulation of paper web. The main idea that we used for describing the basis weight variation in the Cross-Direction is Empirical Orthogonal Functions (EOF) algorithm, which is closely related to Principal Component Analysis (PCA) method. Signal forecasting in time is based on Time-Series analysis. Two principal mathematical procedures that we used in the work are Autoregressive-Moving Average (ARMA) modelling and Ornstein–Uhlenbeck (OU) process.
Resumo:
Singular Value Decomposition (SVD), Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) are some of the mathematical pre- liminaries that are discussed prior to explaining PLS and PCR models. Both PLS and PCR are applied to real spectral data and their di erences and similarities are discussed in this thesis. The challenge lies in establishing the optimum number of components to be included in either of the models but this has been overcome by using various diagnostic tools suggested in this thesis. Correspondence analysis (CA) and PLS were applied to ecological data. The idea of CA was to correlate the macrophytes species and lakes. The di erences between PLS model for ecological data and PLS for spectral data are noted and explained in this thesis. i
Resumo:
In this study, cantilever-enhanced photoacoustic spectroscopy (CEPAS) was applied in different drug detection schemes. The study was divided into two different applications: trace detection of vaporized drugs and drug precursors in the gas-phase, and detection of cocaine abuse in hair. The main focus, however, was the study of hair samples. In the gas-phase, methyl benzoate, a hydrolysis product of cocaine hydrochloride, and benzyl methyl ketone (BMK), a precursor of amphetamine and methamphetamine were investigated. In the solid-phase, hair samples from cocaine overdose patients were measured and compared to a drug-free reference group. As hair consists mostly of long fibrous proteins generally called keratin, proteins from fingernails and saliva were also studied for comparison. Different measurement setups were applied in this study. Gas measurements were carried out using quantum cascade lasers (QLC) as a source in the photoacoustic detection. Also, an external cavity (EC) design was used for a broader tuning range. Detection limits of 3.4 particles per billion (ppb) for methyl benzoate and 26 ppb for BMK in 0.9 s were achieved with the EC-QCL PAS setup. The achieved detection limits are sufficient for realistic drug detection applications. The measurements from drug overdose patients were carried out using Fourier transform infrared (FTIR) PAS. The drug-containing hair samples and drug-free samples were both measured with the FTIR-PAS setup, and the measured spectra were analyzed statistically with principal component analysis (PCA). The two groups were separated by their spectra with PCA and proper spectral pre-processing. To improve the method, ECQCL measurements of the hair samples, and studies using photoacoustic microsampling techniques, were performed. High quality, high-resolution spectra with a broad tuning range were recorded from a single hair fiber. This broad tuning range of an EC-QCL has not previously been used in the photoacoustic spectroscopy of solids. However, no drug detection studies were performed with the EC-QCL solid-phase setup.
Resumo:
This thesis describes the occurrence and sources of selected persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and hexachlorocyclohexanes (HCHs) in the northern watershed of Lake Victoria. Sediments and fish were collected from three highly polluted embayments (i.e. Murchison Bay, Napoleon Gulf and Thurston Bay) of the lake. The analysis for PCDD/Fs, PCBs and PBDEs was done using a high resolution mass spectrometer coupled to a gas chromatograph (GC), and a GC equipped with an electron capture detector was used for HCHs. Total (Σ) PCDD/Fs, PCBs and PBDEs in sediments ranged from 3.19 to 478, 313 to 4325 and 60.8 to 179 pg g-1 dry weight (dw), respectively. The highest concentrations of pollutants were found at sites close to industrial areas and wastewater discharge points. The maximum concentrations of PCDD/Fs, PCBs, PBDEs and HCHs in fish muscle homogenates were 49, 779, 495 and 45,900 pg g-1 wet weight (ww), respectively. The concentrations of the pollutants in Nile perch (Lates niloticus) were significantly greater than those in Nile tilapia (Oreochromis niloticus), possibly due to differences in trophic level and dietary feeding habits among fish species. World Health Organization-toxic equivalency quotient (WHO2005-TEQ) values in the sediments were up to 4.24 pg g-1 dw for PCDD/Fs and 0.55 pg TEQ g-1 dw for the 12 dioxin-like PCBs (dl-PCBs). 23.1% of the samples from the Napoleon Gulf were above the interim sediment quality guideline value of 0.85 pg WHO-TEQ g-1 dw set by the Canadian Council for Ministers of the Environment. The WHO2005-TEQs in fish were 0.001-0.16 pg g-1 for PCDD/Fs and 0.001-0.31 pg g-1 ww for dl- PCBs. The TEQ values were within a permissible level of 3.5 pg g−1 ww recommended by the European Commission. Based on the Commission set TEQs and minimum risk level criteria formulated by the Agency for Toxic Substances and Disease Registry, the consumption of fish from Lake Victoria gives no indication of health risks associated to PCDD/Fs and PCBs. Principal component analysis (PCA) indicated that anthropogenic activities such as agricultural straw open burning, medical waste incinerators and municipal solid waste combustors were the major sources of PCDD/Fs in the watershed of Lake Victoria. The ratios of α-/γ-HCH varied from 0.89 to 1.68 suggesting that the highest HCH residues mainly came from earlier usage and fresh γ-HCH (lindane). In the present study, the concentration of POPs in fish were not significantly related to those in sediments, and the biota sediment accumulation factor (BSAF) concept was found to be a poor predictor of the bioavailability and bioaccumulation of environmental pollutants.
Resumo:
Diplomityössä on käsitelty uudenlaisia menetelmiä riippumattomien komponenttien analyysiin(ICA): Menetelmät perustuvat colligaatioon ja cross-momenttiin. Colligaatio menetelmä perustuu painojen colligaatioon. Menetelmässä on käytetty kahden tyyppisiä todennäköisyysjakaumia yhden sijasta joka perustuu yleiseen itsenäisyyden kriteeriin. Työssä on käytetty colligaatio lähestymistapaa kahdella asymptoottisella esityksellä. Gram-Charlie ja Edgeworth laajennuksia käytetty arvioimaan todennäköisyyksiä näissä menetelmissä. Työssä on myös käytetty cross-momentti menetelmää joka perustuu neljännen asteen cross-momenttiin. Menetelmä on hyvin samankaltainen FastICA algoritmin kanssa. Molempia menetelmiä on tarkasteltu lineaarisella kahden itsenäisen muuttajan sekoituksella. Lähtö signaalit ja sekoitetut matriisit ovattuntemattomia signaali lähteiden määrää lukuunottamatta. Työssä on vertailtu colligaatio menetelmään ja sen modifikaatioita FastICA:an ja JADE:en. Työssä on myös tehty vertailu analyysi suorituskyvyn ja keskusprosessori ajan suhteen cross-momenttiin perustuvien menetelmien, FastICA:n ja JADE:n useiden sekoitettujen parien kanssa.
Resumo:
Recent years have produced great advances in the instrumentation technology. The amount of available data has been increasing due to the simplicity, speed and accuracy of current spectroscopic instruments. Most of these data are, however, meaningless without a proper analysis. This has been one of the reasons for the overgrowing success of multivariate handling of such data. Industrial data is commonly not designed data; in other words, there is no exact experimental design, but rather the data have been collected as a routine procedure during an industrial process. This makes certain demands on the multivariate modeling, as the selection of samples and variables can have an enormous effect. Common approaches in the modeling of industrial data are PCA (principal component analysis) and PLS (projection to latent structures or partial least squares) but there are also other methods that should be considered. The more advanced methods include multi block modeling and nonlinear modeling. In this thesis it is shown that the results of data analysis vary according to the modeling approach used, thus making the selection of the modeling approach dependent on the purpose of the model. If the model is intended to provide accurate predictions, the approach should be different than in the case where the purpose of modeling is mostly to obtain information about the variables and the process. For industrial applicability it is essential that the methods are robust and sufficiently simple to apply. In this way the methods and the results can be compared and an approach selected that is suitable for the intended purpose. Differences in data analysis methods are compared with data from different fields of industry in this thesis. In the first two papers, the multi block method is considered for data originating from the oil and fertilizer industries. The results are compared to those from PLS and priority PLS. The third paper considers applicability of multivariate models to process control for a reactive crystallization process. In the fourth paper, nonlinear modeling is examined with a data set from the oil industry. The response has a nonlinear relation to the descriptor matrix, and the results are compared between linear modeling, polynomial PLS and nonlinear modeling using nonlinear score vectors.
Resumo:
Raw measurement data does not always immediately convey useful information, but applying mathematical statistical analysis tools into measurement data can improve the situation. Data analysis can offer benefits like acquiring meaningful insight from the dataset, basing critical decisions on the findings, and ruling out human bias through proper statistical treatment. In this thesis we analyze data from an industrial mineral processing plant with the aim of studying the possibility of forecasting the quality of the final product, given by one variable, with a model based on the other variables. For the study mathematical tools like Qlucore Omics Explorer (QOE) and Sparse Bayesian regression (SB) are used. Later on, linear regression is used to build a model based on a subset of variables that seem to have most significant weights in the SB model. The results obtained from QOE show that the variable representing the desired final product does not correlate with other variables. For SB and linear regression, the results show that both SB and linear regression models built on 1-day averaged data seriously underestimate the variance of true data, whereas the two models built on 1-month averaged data are reliable and able to explain a larger proportion of variability in the available data, making them suitable for prediction purposes. However, it is concluded that no single model can fit well the whole available dataset and therefore, it is proposed for future work to make piecewise non linear regression models if the same available dataset is used, or the plant to provide another dataset that should be collected in a more systematic fashion than the present data for further analysis.
Resumo:
Tässä työssä raportoidaan hybridihitsauksesta otettujen suurnopeuskuvasarjojen automaattisen analyysijärjestelmän kehittäminen.Järjestelmän tarkoitus oli tuottaa tietoa, joka avustaisi analysoijaa arvioimaan kuvatun hitsausprosessin laatua. Tutkimus keskittyi valokaaren taajuuden säännöllisyyden ja lisäainepisaroiden lentosuuntien mittaamiseen. Valokaaria havaittiin kuvasarjoista sumean c-means-klusterointimenetelmän avullaja perättäisten valokaarien välistä aikaväliä käytettiin valokaaren taajuuden säännöllisyyden mittarina. Pisaroita paikannettiin menetelmällä, jossa yhdistyi pääkomponenttianalyysi ja tukivektoriluokitin. Kalman-suodinta käytettiin tuottamaan arvioita pisaroiden lentosuunnista ja nopeuksista. Lentosuunnanmääritysmenetelmä luokitteli pisarat niiden arvioitujen lentosuuntien perusteella. Järjestelmän kehittämiseen käytettävissä olleet kuvasarjat poikkesivat merkittävästi toisistaan kuvanlaadun ja pisaroiden ulkomuodon osalta, johtuen eroista kuvaus- ja hitsausprosesseissa. Analyysijärjestelmä kehitettiin toimimaan pienellä osajoukolla kuvasarjoja, joissa oli tietynlainen kuvaus- ja hitsausprosessi ja joiden kuvanlaatu ja pisaroiden ulkomuoto olivat samankaltaisia, mutta järjestelmää testattiin myös osajoukon ulkopuolisilla kuvasarjoilla. Testitulokset osoittivat, että lentosuunnanmääritystarkkuus oli kohtuullisen suuri osajoukonsisällä ja pieni muissa kuvasarjoissa. Valokaaren taajuuden säännöllisyyden määritys oli tarkka useammassa kuvasarjassa.
Resumo:
Organisatorisen luottamuksen tutkimuksessa luottamus nähdään yleensä henkilöiden välisenä ilmiönä kuten työntekijän luottamuksena työtovereihin, esimieheen tai lähimpään johtoon. Organisatorisessa luottamuksessa on kuitenkin myös ei-henkilöityvä ulottuvuus, ns. institutionaalinen luottamus. Tähän mennessä vain muutamat tutkijat ovat omissa tutkimuksissaan käyttäneet myös institutionaalista luottamusta osana organisatorista luottamusta. Tämän työn tavoitteena on kehittää institutionaalisen luottamuksen käsitettä sekä mittari sen havainnoimiseksi organisaatioympäristössä. Kehitysprosessi koostui kolmesta vaiheesta. Ensimmäisessä vaiheessa kehitettiin mittariin tulevia väittämiä sekä arvioitiin sisällön validiteetti. Toinen vaihe käsitti aineiston keruun, väittämien karsimisen sekä vaihtoehtoisten mallien vertailun. Kolmannessa vaiheessa arvioitiin rakennevaliditeetti sekä reliabiliteetti. Työn empiirinen osatoteutettiin internet-kyselynä aikuisopiskelijoiden keskuudessa. Aineiston analysoinnissa käytettiin pääkomponenttianalyysiä sekä konfirmatorista faktorianalyysiä. Institutionaalinen luottamus muodostuu kahdesta ulottuvuudesta: kyvykkyys ja oikeudenmukaisuus. Kyvykkyys muodostuu viidestä alakomponentista: operatiivisen toiminnan organisointi, organisaation pysyvyys, kyvykkyys liiketoiminnan ja ihmisten johtamisessa, teknologinen luotettavuus sekä kilpailukyky. Oikeudenmukaisuus puolestaan muodostuu HRM-käytännöistä, organisaatiossa vallitsevasta reilun pelin hengestä sekä kommunikaatiosta. Lopullinen mittari kyvykkyydelle käsittää 18 väittämää ja oikeudenmukaisuudelle 13 väittämää. Työssä kehitetty mittari mahdollistaa organisatorisen luottamuksen entistä paremman ja luotettavamman mittaamisen. Tutkijan tietämyksen mukaan tämä onensimmäinen kokonaisvaltainen mittari institutionaalisen luottamuksen mittaamiseksi.