5 resultados para Practice Models
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Tämä työ luo katsauksen ajallisiin ja stokastisiin ohjelmien luotettavuus malleihin sekä tutkii muutamia malleja käytännössä. Työn teoriaosuus sisältää ohjelmien luotettavuuden kuvauksessa ja arvioinnissa käytetyt keskeiset määritelmät ja metriikan sekä varsinaiset mallien kuvaukset. Työssä esitellään kaksi ohjelmien luotettavuusryhmää. Ensimmäinen ryhmä ovat riskiin perustuvat mallit. Toinen ryhmä käsittää virheiden ”kylvöön” ja merkitsevyyteen perustuvat mallit. Työn empiirinen osa sisältää kokeiden kuvaukset ja tulokset. Kokeet suoritettiin käyttämällä kolmea ensimmäiseen ryhmään kuuluvaa mallia: Jelinski-Moranda mallia, ensimmäistä geometrista mallia sekä yksinkertaista eksponenttimallia. Kokeiden tarkoituksena oli tutkia, kuinka syötetyn datan distribuutio vaikuttaa mallien toimivuuteen sekä kuinka herkkiä mallit ovat syötetyn datan määrän muutoksille. Jelinski-Moranda malli osoittautui herkimmäksi distribuutiolle konvergaatio-ongelmien vuoksi, ensimmäinen geometrinen malli herkimmäksi datan määrän muutoksille.
Resumo:
Systems biology is a new, emerging and rapidly developing, multidisciplinary research field that aims to study biochemical and biological systems from a holistic perspective, with the goal of providing a comprehensive, system- level understanding of cellular behaviour. In this way, it addresses one of the greatest challenges faced by contemporary biology, which is to compre- hend the function of complex biological systems. Systems biology combines various methods that originate from scientific disciplines such as molecu- lar biology, chemistry, engineering sciences, mathematics, computer science and systems theory. Systems biology, unlike “traditional” biology, focuses on high-level concepts such as: network, component, robustness, efficiency, control, regulation, hierarchical design, synchronization, concurrency, and many others. The very terminology of systems biology is “foreign” to “tra- ditional” biology, marks its drastic shift in the research paradigm and it indicates close linkage of systems biology to computer science. One of the basic tools utilized in systems biology is the mathematical modelling of life processes tightly linked to experimental practice. The stud- ies contained in this thesis revolve around a number of challenges commonly encountered in the computational modelling in systems biology. The re- search comprises of the development and application of a broad range of methods originating in the fields of computer science and mathematics for construction and analysis of computational models in systems biology. In particular, the performed research is setup in the context of two biolog- ical phenomena chosen as modelling case studies: 1) the eukaryotic heat shock response and 2) the in vitro self-assembly of intermediate filaments, one of the main constituents of the cytoskeleton. The range of presented approaches spans from heuristic, through numerical and statistical to ana- lytical methods applied in the effort to formally describe and analyse the two biological processes. We notice however, that although applied to cer- tain case studies, the presented methods are not limited to them and can be utilized in the analysis of other biological mechanisms as well as com- plex systems in general. The full range of developed and applied modelling techniques as well as model analysis methodologies constitutes a rich mod- elling framework. Moreover, the presentation of the developed methods, their application to the two case studies and the discussions concerning their potentials and limitations point to the difficulties and challenges one encounters in computational modelling of biological systems. The problems of model identifiability, model comparison, model refinement, model inte- gration and extension, choice of the proper modelling framework and level of abstraction, or the choice of the proper scope of the model run through this thesis.
Resumo:
Global challenges, complexity and continuous uncertainty demand development of leadership approaches, employees and multi-organisation constellations. Current leadership theories do not sufficiently address the needs of complex business environments. First of all, before successful leadership models can be applied in practice, leadership needs to shift from the industrial age to the knowledge era. Many leadership models still view leadership solely through the perspective of linear process thinking. In addition, there is not enough knowledge or experience in applying these newer models in practice. Leadership theories continue to be based on the assumption that leaders possess or have access to all the relevant knowledge and capabilities to decide future directions without external advice. In many companies, however, the workforce consists of skilled professionals whose work and related interfaces are so challenging that the leaders cannot grasp all the linked viewpoints and cross-impacts alone. One of the main objectives of this study is to understand how to support participants in organisations and their stakeholders to, through practice-based innovation processes, confront various environments. Another aim is to find effective ways of recognising and reacting to diverse contexts, so companies and other stakeholders are better able to link to knowledge flows and shared value creation processes in advancing joint value to their customers. The main research question of this dissertation is, then, to seek understanding of how to enhance leadership in complex environments. The dissertation can, on the whole, be characterised as a qualitative multiple-case study. The research questions and objectives were investigated through six studies published in international scientific journals. The main methods applied were interviews, action research and a survey. The empirical focus was on Finnish companies, and the research questions were examined in various organisations at the top levels (leaders and managers) and bottom levels (employees) in the context of collaboration between organisations and cooperation between case companies and their client organisations. However, the emphasis of the analysis is the internal and external aspects of organisations, which are conducted in practice-based innovation processes. The results of this study suggest that the Cynefin framework, complexity leadership theory and transformational leadership represent theoretical models applicable to developing leadership through practice-based innovation. In and of themselves, they all support confronting contemporary challenges, but an implementable method for organisations may be constructed by assimilating them into practice-based innovation processes. Recognition of diverse environments, their various contexts and roles in the activities and collaboration of organisations and their interest groups is ever-more important to achieving better interaction in which a strategic or formal status may be bypassed. In innovation processes, it is not necessarily the leader who is in possession of the essential knowledge; thus, it is the role of leadership to offer methods and arenas where different actors may generate advances. Enabling and supporting continuous interaction and integrated knowledge flows is of crucial importance, to achieve emergence of innovations in the activities of organisations and various forms of collaboration. The main contribution of this dissertation relates to applying these new conceptual models in practice. Empirical evidence on the relevance of different leadership roles in practice-based innovation processes in Finnish companies is another valuable contribution. Finally, the dissertation sheds light on the significance of combining complexity science with leadership and innovation theories in research.
Resumo:
Linguistic modelling is a rather new branch of mathematics that is still undergoing rapid development. It is closely related to fuzzy set theory and fuzzy logic, but knowledge and experience from other fields of mathematics, as well as other fields of science including linguistics and behavioral sciences, is also necessary to build appropriate mathematical models. This topic has received considerable attention as it provides tools for mathematical representation of the most common means of human communication - natural language. Adding a natural language level to mathematical models can provide an interface between the mathematical representation of the modelled system and the user of the model - one that is sufficiently easy to use and understand, but yet conveys all the information necessary to avoid misinterpretations. It is, however, not a trivial task and the link between the linguistic and computational level of such models has to be established and maintained properly during the whole modelling process. In this thesis, we focus on the relationship between the linguistic and the mathematical level of decision support models. We discuss several important issues concerning the mathematical representation of meaning of linguistic expressions, their transformation into the language of mathematics and the retranslation of mathematical outputs back into natural language. In the first part of the thesis, our view of the linguistic modelling for decision support is presented and the main guidelines for building linguistic models for real-life decision support that are the basis of our modeling methodology are outlined. From the theoretical point of view, the issues of representation of meaning of linguistic terms, computations with these representations and the retranslation process back into the linguistic level (linguistic approximation) are studied in this part of the thesis. We focus on the reasonability of operations with the meanings of linguistic terms, the correspondence of the linguistic and mathematical level of the models and on proper presentation of appropriate outputs. We also discuss several issues concerning the ethical aspects of decision support - particularly the loss of meaning due to the transformation of mathematical outputs into natural language and the issue or responsibility for the final decisions. In the second part several case studies of real-life problems are presented. These provide background and necessary context and motivation for the mathematical results and models presented in this part. A linguistic decision support model for disaster management is presented here – formulated as a fuzzy linear programming problem and a heuristic solution to it is proposed. Uncertainty of outputs, expert knowledge concerning disaster response practice and the necessity of obtaining outputs that are easy to interpret (and available in very short time) are reflected in the design of the model. Saaty’s analytic hierarchy process (AHP) is considered in two case studies - first in the context of the evaluation of works of art, where a weak consistency condition is introduced and an adaptation of AHP for large matrices of preference intensities is presented. The second AHP case-study deals with the fuzzified version of AHP and its use for evaluation purposes – particularly the integration of peer-review into the evaluation of R&D outputs is considered. In the context of HR management, we present a fuzzy rule based evaluation model (academic faculty evaluation is considered) constructed to provide outputs that do not require linguistic approximation and are easily transformed into graphical information. This is achieved by designing a specific form of fuzzy inference. Finally the last case study is from the area of humanities - psychological diagnostics is considered and a linguistic fuzzy model for the interpretation of outputs of multidimensional questionnaires is suggested. The issue of the quality of data in mathematical classification models is also studied here. A modification of the receiver operating characteristics (ROC) method is presented to reflect variable quality of data instances in the validation set during classifier performance assessment. Twelve publications on which the author participated are appended as a third part of this thesis. These summarize the mathematical results and provide a closer insight into the issues of the practicalapplications that are considered in the second part of the thesis.
Resumo:
The costs of health care are going up in many countries. In order to provide affordable and effective health care solutions, new technologies and approaches are constantly being developed. In this research, video games are presented as a possible solution to the problem. Video games are fun, and nowadays most people like to spend time on them. In addition, recent studies have pointed out that video games can have notable health benefits. Health games have already been developed, used in practice, and researched. However, the bulk of health game studies have been concerned with the design or the effectiveness of the games; no actual business studies have been conducted on the subject, even though health games often lack commercial success despite their health benefits. This thesis seeks to fill this gap. The specific aim of this thesis is to develop a conceptual business model framework and empirically use it in explorative medical game business model research. In the first stage of this research, a literature review was conducted and the existing literature analyzed and synthesized into a conceptual business model framework consisting of six dimensions. The motivation behind the synthesis is the ongoing ambiguity around the business model concept. In the second stage, 22 semi-structured interviews were conducted with different professionals within the value network for medical games. The business model framework was present in all stages of the empirical research: First, in the data collection stage, the framework acted as a guiding instrument, focusing the interview process. Then, the interviews were coded and analyzed using the framework as a structure. The results were then reported following the structure of the framework. In the results, the interviewees highlighted several important considerations and issues for medical games concerning the six dimensions of the business model framework. Based on the key findings of this research, several key components of business models for medical games were identified and illustrated in a single figure. Furthermore, five notable challenges for business models for medical games were presented, and possible solutions for the challenges were postulated. Theoretically, these findings provide pioneering information on the untouched subject of business models for medical games. Moreover, the conceptual business model framework and its use in the novel context of medical games provide a contribution to the business model literature. Regarding practice, this thesis further accentuates that medical games can offer notable benefits to several stakeholder groups and offers advice to companies seeking to commercialize these games.