12 resultados para Polyester and vinylester thermoset matrices

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tämän diplomityön tarkoituksena oli tutkia miten kuluttajien kierrättämästä polyeteenitereftalaatista ( PET ) voi valmistaa tyydyttymättömiä polyesterihartseja. Työssä valmistettiin yleiskäyttöön soveltuva laminointihartsi sekä 'gel coat' -hartsi jota käytetään esim. veneiden pintamaalina. Yleishartsin depolymerointiin käytettiin propyleeniglykolia ja 'gel coat' -hartsin valmistamiseen neopentyyliglykolia. Polykondensaatiovaiheessa reaktioon lisättiin maleiinihappoa ja lopuksi hartsit liuotettiin styreeniin. Kirjallisuusosassa esitetään eri menetelmiä PET:n depolymeroimiseksi. Lisäksi esitetään eri vaihtoehtoja glykolien, happojen, katalyyttien ja vinyylimonomeerien valitsemiseksi tyydyttymättömien polyesterihartsien valmistuksessa. Analyysimenetelmiä nestemäisten ja kovetettujen hartsien tutkimiseen ja vertailuun käydään läpi kuten myös erilaisia sovelluksia polyesterihartsien käyttämiseksi. Kokeellinen osa todisti että PET-pullojäte voidaan prosessoida hartsiksiilman uusia investointeja prosessilaitteistoon. PET:n glykolyysi kesti viidestäseitsemään tuntia ja polykondensaatiovaihe kahdesta ja puolesta viiteen tuntiin. Hartsien molekyylipainot ja mekaanisten testien tulokset olivat vertailukelpoisia kaupallisten hartsien antamien tulosten kanssa. Glykolyysivaiheen momomeeri- ja oligomeeripitoisuudet mitattiin geelipermeaatiokromatografialla, jotta nähtiin miten pitkälle depolymerisaatio oli edennyt. Tätä tietoa voidaan hyödyntää uusien hartsireseptin suunnittelussa. Polymeeriketjussa jäljellä olevien C=C kaksoissidosten määrä ja niiden isomeraatioaste maleaattimuodosta fumaraattimuotoon mitattiin 1H-NMR -menetelmällä. Tislevesien koostumus määritettiin kaasukromatografialla, ja tulokset kertoivat katalyytin sisältämän kloorin reagoineen glykolien kanssa, johtaen suureen glykolikulutukseen ja muihin ei-toivottuihin sivureaktioihin. Hartsien sietokykyä auringon valolle mitattiin niiden UV-absorption avulla. Kummastakin hartsista valmistettiin 'gel coat' -maalit jotkalaitettiin sääkoneeseen, joka simuloi auringonpaistetta ja vesisadetta vuorotellen. Näistä 'gel coateista' mitattiin niiden kellastumista. Kummastakin hartsista tehdyt valut asetettiin myös sääkoneeseen ja IR-spektreistä ennen jajälkeen koetta nähtiin että C=O ja C-O esterisidoksia oli hajonnut.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tutkimus keskittyy kansainväliseen hajauttamiseen suomalaisen sijoittajan näkökulmasta. Tutkimuksen toinen tavoite on selvittää tehostavatko uudet kovarianssimatriisiestimaattorit minimivarianssiportfolion optimointiprosessia. Tavallisen otoskovarianssimatriisin lisäksi optimoinnissa käytetään kahta kutistusestimaattoria ja joustavaa monimuuttuja-GARCH(1,1)-mallia. Tutkimusaineisto koostuu Dow Jonesin toimialaindekseistä ja OMX-H:n portfolioindeksistä. Kansainvälinen hajautusstrategia on toteutettu käyttäen toimialalähestymistapaa ja portfoliota optimoidaan käyttäen kahtatoista komponenttia. Tutkimusaieisto kattaa vuodet 1996-2005 eli 120 kuukausittaista havaintoa. Muodostettujen portfolioiden suorituskykyä mitataan Sharpen indeksillä. Tutkimustulosten mukaan kansainvälisesti hajautettujen investointien ja kotimaisen portfolion riskikorjattujen tuottojen välillä ei ole tilastollisesti merkitsevää eroa. Myöskään uusien kovarianssimatriisiestimaattoreiden käytöstä ei synnytilastollisesti merkitsevää lisäarvoa verrattuna otoskovarianssimatrisiin perustuvaan portfolion optimointiin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need for high performance, high precision, and energy saving in rotating machinery demands an alternative solution to traditional bearings. Because of the contactless operation principle, the rotating machines employing active magnetic bearings (AMBs) provide many advantages over the traditional ones. The advantages such as contamination-free operation, low maintenance costs, high rotational speeds, low parasitic losses, programmable stiffness and damping, and vibration insulation come at expense of high cost, and complex technical solution. All these properties make the use of AMBs appropriate primarily for specific and highly demanding applications. High performance and high precision control requires model-based control methods and accurate models of the flexible rotor. In turn, complex models lead to high-order controllers and feature considerable computational burden. Fortunately, in the last few years the advancements in signal processing devices provide new perspective on the real-time control of AMBs. The design and the real-time digital implementation of the high-order LQ controllers, which focus on fast execution times, are the subjects of this work. In particular, the control design and implementation in the field programmable gate array (FPGA) circuits are investigated. The optimal design is guided by the physical constraints of the system for selecting the optimal weighting matrices. The plant model is complemented by augmenting appropriate disturbance models. The compensation of the force-field nonlinearities is proposed for decreasing the uncertainty of the actuator. A disturbance-observer-based unbalance compensation for canceling the magnetic force vibrations or vibrations in the measured positions is presented. The theoretical studies are verified by the practical experiments utilizing a custom-built laboratory test rig. The test rig uses a prototyping control platform developed in the scope of this work. To sum up, the work makes a step in the direction of an embedded single-chip FPGA-based controller of AMBs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vesistöissä laivojen pintaan tarttuvat eliöt ovat sekä taloudellinen että kosmeettinen ongelma. Kontrolloimattoman eliöiden kiinnittymisen seurauksena aiheutuu kitkaa, joka puolestaan hidastaa laivan nopeutta ja aiheuttaa polttoaineen kulutuksen kasvua. Tavallisesti eliöiden kiinnittymistä ehkäistään kiinnittymisenestomaalien avulla. Niiden toiminta perustuu biosidien liukenemiseen, jolloin veden ja pinnoitteen väliselle rajapinnalle muodostuu korkea biosidipitoisuus, joka estää eliöiden kiinnittymistä pinnalle. Maailmanlaajuinen orgaanisten tinayhdisteiden käyttökielto kiinnittymisen-estomaaleissa tulee voimaan vuoden 2003 alusta. Tällä hetkellä 70 % maailman laivastoista on suojattu orgaanista tinayhdistettä sisältävällä kiinnittymisenestomaalilla. Nyt onkin kasvava tarve kehittää uusia ympäristöystävällisempiä kiinnittymisenesto-pinnoitteita. Todennäköisesti tinayhdisteet tullaan korvaamaan synteettisillä orgaanisilla yhdisteillä käytettyinä yhdessä kuparin kanssa. Työn tarkoituksena oli valmistaa ympäristöystävällisempi tyydyttämätön polyesteripinnoite, joka itsessään ehkäisisi eliöiden kiinnittymistä. Kirjallisuusosassa tutustuttiin markkinoilla oleviin biosideihin, niiden myrkyllisyyteen ja vaikutuksiin ympäristölle sekä muuttuvaan lainsäädäntöön. Työssä tarkasteltiin myös tällä hetkellä markkinoilla olevia pinnoitteita ja niiden toimintamekanismeja sekä myrkyttömiä vaihtoehtopinnoitteita kiinnittymisenestoon. Kokeellinen osa koostui kahdesta osasta. Ensimmäisessä osassa tutkittiin biosidien sopivuutta käytettäväksi yhdessä tyydyttymättömän polyesterin kanssa. Yhteensopivuutta määritettiin applikaatiotesteillä ja pinnoitteen käyttäytymisen perusteella. Toinen vaihe oli selvittää pinnoitteen tehokkuus leväntarttumista vastaan. Tyydyttymätön polyesteri gel coat kiinnittymisenesto-ominaisuuksilla valmistettiin dispergoimalla biosideja tyydyttymättömään polyesterigeeliin. Yhteensopivuustestien tulosten perusteella huomattiin, ettei biosidien lisääminen geeliin vaikuta mainittavasti applikaatio-ominaisuuksien huononemiseen. Brookfield viskositeetin stabiilisuus jopa paranee ja yksi työssä käytetyistä biosideista parantaa pinnoitteen säänkestoominaisuuksia. Tässä työssä ei pystytty määrittämään eri biosidien välisiä eroja tehokkuudessa levää vastaan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central goal of food safety policy in the European Union (EU) is to protect consumer health by guaranteeing a high level of food safety throughout the food chain. This goal can in part be achieved by testing foodstuffs for the presence of various chemical and biological hazards. The aim of this study was to facilitate food safety testing by providing rapid and user-friendly methods for the detection of particular food-related hazards. Heterogeneous competitive time-resolved fluoroimmunoassays were developed for the detection of selected veterinary residues, that is coccidiostat residues, in eggs and chicken liver. After a simplified sample preparation procedure, the immunoassays were performed either in manual format with dissociation-enhanced measurement or in automated format with pre-dried assay reagents and surface measurement. Although the assays were primarily designed for screening purposes providing only qualitative results, they could also be used in a quantitative mode. All the developed assays had good performance characteristics enabling reliable screening of samples at concentration levels required by the authorities. A novel polymerase chain reaction (PCR)-based assay system was developed for the detection of Salmonella spp. in food. The sample preparation included a short non-selective pre-enrichment step, after which the target cells were collected with immunomagnetic beads and applied to PCR reaction vessels containing all the reagents required for the assay in dry form. The homogeneous PCR assay was performed with a novel instrument platform, GenomEra, and the qualitative assay results were automatically interpreted based on end-point time-resolved fluorescence measurements and cut-off values. The assay was validated using various food matrices spiked with sub-lethally injured Salmonella cells at levels of 1-10 colony forming units (CFU)/25 g of food. The main advantage of the system was the exceptionally short time to result; the entire process starting from the pre-enrichment and ending with the PCR result could be completed in eight hours. In conclusion, molecular methods using state-of-the-art assay techniques were developed for food safety testing. The combination of time-resolved fluorescence detection and ready-to-use reagents enabled sensitive assays easily amenable to automation. Consequently, together with the simplified sample preparation, these methods could prove to be applicable in routine testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theory part of the Master’s thesis introduces fibres with high tensile strength and elongation used in the production of paper or board. Strong speciality papers are made of bleached softwood long fibre pulp. The aim of the thesis is to find new fibres suitable for paper making to increase either tensile strength, elongation or both properties. The study introduces how fibres bond and what kind of fibres give the strongest bonds into fibre matrix. The fibres that are used the in manufacturing of non-wovens are long and elastic. They are longer than softwood cellulose fibres. The end applications of non-wovens and speciality papers are often the same, for instance, wet napkins or filter media. The study finds out which fibres are used in non-wovens and whether the same fibres could be added to cellulose pulp as armature fibres, what it would require for these fibres to be blended in cellulose, how they would bind with cellulose and whether some binding agents or thermal bonding, such as hot calendaring would be necessary. The following fibres are presented: viscose, polyester, nylon, polyethylene, polypropylene and bicomponent fibres. In the empiric part of the study the most suitable new fibres are selected for making hand sheets in laboratory. Test fibres are blended with long fibre cellulose. The test fibres are viscose (Tencel), polypropylene and polyethylene. Based on the technical values measured in the sheets, the study proposes how to continue trials on paper machine with viscose, polyester, bicomponent and polypropylene fibres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cutin and suberin are structural and protective polymers of plant surfaces. The epidermal cells of the aerial parts of plants are covered with an extracellular cuticular layer, which consists of polyester cutin, highly resistant cutan, cuticular waxes and polysaccharides which link the layer to the epidermal cells. A similar protective layer is formed by a polyaromatic-polyaliphatic biopolymer suberin, which is present particularly in the cell walls of the phellem layer of periderm of the underground parts of plants (e.g. roots and tubers) and the bark of trees. In addition, suberization is also a major factor in wound healing and wound periderm formation regardless of the plants’ tissue. Knowledge of the composition and functions of cuticular and suberin polymers is important for understanding the physiological properties for the plants and for nutritional quality when these plants are consumed as foods. The aims of the practical work were to assess the chemical composition of cuticular polymers of several northern berries and seeds and suberin of two varieties of potatoes. Cutin and suberin were studied as isolated polymers and further after depolymerization as soluble monomers and solid residues. Chemical and enzymatic depolymerization techniques were compared and a new chemical depolymerization method was developed. Gas chromatographic analysis with mass spectrometric detection (GC-MS) was used to assess the monomer compositions. Polymer investigations were conducted with solid state carbon-13 cross polarization magic angle spinning nuclear magnetic resonance spectroscopy (13C CP-MAS NMR), Fourier transform infrared spectroscopy (FTIR) and microscopic analysis. Furthermore, the development of suberin over one year of post-harvest storage was investigated and the cuticular layers from berries grown in the North and South of Finland were compared. The results show that the amounts of isolated cuticular layers and cutin monomers, as well as monomeric compositions vary greatly between the berries. The monomer composition of seeds was found to differ from the corresponding berry peel monomers. The berry cutin monomers were composed mostly of long-chain aliphatic ω-hydroxy acids, with various mid-chain functionalities (double-bonds, epoxy, hydroxy and keto groups). Substituted α,ω-diacids predominated over ω-hydroxy acids in potato suberin monomers and slight differences were found between the varieties. The newly-developed closed tube chemical method was found to be suitable for cutin and suberin analysis and preferred over the solvent-consuming and laborious reflux method. Enzymatic hydrolysis with cutinase was less effective than chemical methanolysis and showed specificity towards α,ω-diacid bonds. According to 13C CP-MAS NMR and FTIR, the depolymerization residues contained significant amounts of aromatic structures, polysaccharides and possible cutan-type aliphatic moieties. Cultivation location seems to have effect on cuticular composition. The materials studied contained significant amounts of different types of biopolymers that could be utilized for several purposes with or without further processing. The importance of the so-called waste material from industrial processes of berries and potatoes as a source of either dietary fiber or specialty chemicals should be further investigated in detail. The evident impact of cuticular and suberin polymers, among other fiber components, on human health should be investigated in clinical trials. These by-product materials may be used as value-added fiber fractions in the food industry and as raw materials for specialty chemicals such as lubricants and emulsifiers, or as building blocks for novel polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adsorbents functionalized with chelating agents are effective in removal of heavy metals from aqueous solutions. Important properties of such adsorbents are high binding affinity as well as regenerability. In this study, aminopolycarboxylic acid, EDTA and DTPA, were immobilized on the surface of silica gel, chitosan, and their hybrid materials to achieve chelating adsorbents for heavy metals such as Co(II), Ni(II), Cd(II), and Pb(II). New knowledge about the adsorption properties of EDTA- and DTPA-functionalizedadsorbents was obtained. Experimental work showed the effectiveness, regenerability, and stability of the studied adsorbents. Both advantages and disadvantages of the adsorbents were evaluated. For example, the EDTA-functionalized chitosan-silica hybrid materials combined the benefits of the silica gel and chitosan while at the same time diminishing their observed drawbacks. Modeling of adsorption kinetics and isotherms is an important step in design process. Therefore, several kinetic and isotherm models were introduced and applied in this work. Important aspects such as effect of error function, data range, initial guess values, and linearization were discussed and investigated. The selection of the most suitable model was conducted by comparing the experimental and simulated data as well as evaluating the correspondence between the theory behind the model and properties of the adsorbent. In addition, modeling of two-component data was conducted using various extended isotherms. Modeling results for both one- and twocomponent systems supported each other. Finally, application testing of EDTA- and DTPA-functionalized adsorbents was conducted. The most important result was the applicability of DTPA-functionalized silica gel and chitosan in the capturing of Co(II) from its aqueous EDTA-chelate. Moreover, these adsorbents were efficient in various solution matrices. In addition, separation of Ni(II) from Co(II) and Ni(II) and Pb(II) from Co(II) and Cd(II) was observed in two- and multimetal systems. Lastly, prior to their analysis, EDTA- and DTPA-functionalized silica gels were successfully used to preconcentrate metal ions from both pure and salty waters

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cells of epithelial origin, e.g. from breast and prostate cancers, effectively differentiate into complex multicellular structures when cultured in three-dimensions (3D) instead of conventional two-dimensional (2D) adherent surfaces. The spectrum of different organotypic morphologies is highly dependent on the culture environment that can be either non-adherent or scaffold-based. When embedded in physiological extracellular matrices (ECMs), such as laminin-rich basement membrane extracts, normal epithelial cells differentiate into acinar spheroids reminiscent of glandular ductal structures. Transformed cancer cells, in contrast, typically fail to undergo acinar morphogenic patterns, forming poorly differentiated or invasive multicellular structures. The 3D cancer spheroids are widely accepted to better recapitulate various tumorigenic processes and drug responses. So far, however, 3D models have been employed predominantly in the Academia, whereas the pharmaceutical industry has yet to adopt a more widely and routine use. This is mainly due to poor characterisation of cell models, lack of standardised workflows and high throughput cell culture platforms, and the availability of proper readout and quantification tools. In this thesis, a complete workflow has been established entailing well-characterised 3D cell culture models for prostate cancer, a standardised 3D cell culture routine based on high-throughput-ready platform, automated image acquisition with concomitant morphometric image analysis, and data visualisation, in order to enable large-scale high-content screens. Our integrated suite of software and statistical analysis tools were optimised and validated using a comprehensive panel of prostate cancer cell lines and 3D models. The tools quantify multiple key cancer-relevant morphological features, ranging from cancer cell invasion through multicellular differentiation to growth, and detect dynamic changes both in morphology and function, such as cell death and apoptosis, in response to experimental perturbations including RNA interference and small molecule inhibitors. Our panel of cell lines included many non-transformed and most currently available classic prostate cancer cell lines, which were characterised for their morphogenetic properties in 3D laminin-rich ECM. The phenotypes and gene expression profiles were evaluated concerning their relevance for pre-clinical drug discovery, disease modelling and basic research. In addition, a spontaneous model for invasive transformation was discovered, displaying a highdegree of epithelial plasticity. This plasticity is mediated by an abundant bioactive serum lipid, lysophosphatidic acid (LPA), and its receptor LPAR1. The invasive transformation was caused by abrupt cytoskeletal rearrangement through impaired G protein alpha 12/13 and RhoA/ROCK, and mediated by upregulated adenylyl cyclase/cyclic AMP (cAMP)/protein kinase A, and Rac/ PAK pathways. The spontaneous invasion model tangibly exemplifies the biological relevance of organotypic cell culture models. Overall, this thesis work underlines the power of novel morphometric screening tools in drug discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enantiopure intermediates are of high value in drug synthesis. Biocatalysis alone or combined with chemical synthesis provides powerful tools to access enantiopure compounds. In biocatalysis, chemo-, regio- and enantioselectivity of enzymes are combined with their inherent environmentally benign nature. Enzymes can be applied in versatile chemical reactions with non-natural substrates under synthesis conditions. Immobilization of an enzyme is a crucial part of an efficient biocatalytic synthesis method. Successful immobilization enhances the catalytic performance of an enzyme and enables its reuse in successive reactions. This thesis demonstrates the feasibility of biocatalysis in the preparation of enantiopure secondary alcohols and primary amines. Viability and synthetic usability of the studied biocatalytic methods have been addressed throughout this thesis. Candida antarctica lipase B (CAL-B) catalyzed enantioselective O-acylation of racemic secondary alcohols was successfully incorporated with in situ racemization in the dynamic kinetic resolution, affording the (R)-esters in high yields and enantiopurities. Side reactions causing decrease in yield and enantiopurity were suppressed. CAL-B was also utilized in the solvent-free kinetic resolution of racemic primary amines. This method produced the enantiomers as (R)-amides and (S)-amines under ambient conditions. An in-house sol-gel entrapment increased the reusability of CAL-B. Arthrobacter sp. omega-transaminase was entrapped in sol-gel matrices to obtain a reusable catalyst for the preparation enantiopure primary amines in an aqueous medium. The obtained heterogeneous omega-transaminase catalyst enabled the enantiomeric enrichment of the racemic amines to their (S)-enantiomers. The synthetic usability of the sol-gel catalyst was demonstrated in five successive preparative kinetic resolutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wood-based bioprocesses present one of the fields of interest with the most potential in the circular economy. Expanding the use of wood raw material in sustainable industrial processes is acknowledged on both a global and a regional scale. This thesis concerns the application of a capillary zone electrophoresis (CZE) method with the aim of monitoring wood-based bioprocesses. The range of detectable carbohydrate compounds is expanded to furfural and polydatin in aquatic matrices. The experimental portion has been conducted on a laboratory scale with samples imitating process samples. This thesis presents a novel strategy for the uncertainty evaluation via in-house validation. The focus of the work is on the uncertainty factors of the CZE method. The CZE equipment is sensitive to ambient conditions. Therefore, a proper validation is essential for robust application. This thesis introduces a tool for process monitoring of modern bioprocesses. As a result, it is concluded that the applied CZE method provides additional results to the analysed samples and that the profiling approach is suitable for detecting changes in process samples. The CZE method shows significant potential in process monitoring because of the capability of simultaneously detecting carbohydrate-related compound clusters. The clusters can be used as summary terms, indicating process variation and drift.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Avidins (Avds) are homotetrameric or homodimeric glycoproteins with typically less than 130 amino acid residues per monomer. They form a highly stable, non-covalent complex with biotin (vitamin H) with Kd = 10-15 M (for chicken Avd). The best-studied Avds are the chicken Avd from Gallus gallus and streptavidin from Streptomyces avidinii, although other Avd studies have also included Avds from various origins, e.g., from frogs, fishes, mushrooms and from many different bacteria. Several engineered Avds have been reported as well, e.g., dual-chain Avds (dcAvds) and single-chain Avds (scAvds), circular permutants with up to four simultaneously modifiable ligand-binding sites. These engineered Avds along with the many native Avds have potential to be used in various nanobiotechnological applications. In this study, we made a structure-based alignment representing all currently available sequences of Avds and studied the evolutionary relationship of Avds using phylogenetic analysis. First, we created an initial multiple sequence alignment of Avds using 42 closely related sequences, guided by the known Avd crystal structures. Next, we searched for non-redundant Avd sequences from various online databases, including National Centre for Biotechnology Information and the Universal Protein Resource; the identified sequences were added to the initial alignment to expand it to a final alignment of 242 Avd sequences. The MEGA software package was used to create distance matrices and a phylogenetic tree. Bootstrap reproducibility of the tree was poor at multiple nodes and may reflect on several possible issues with the data: the sequence length compared is relatively short and, whereas some positions are highly conserved and functional, others can vary without impinging on the structure or the function, so there are few informative sites; it may be that periods of rapid duplication have led to paralogs and that the differences among them are within the error limit of the data; and there may be other yet unknown reasons. Principle component analysis applied to alternative distance data did segregate the major groups, and success is likely due to the multivariate consideration of all the information. Furthermore, based on our extensive alignment and phylogenetic analysis, we expressed two novel Avds, lacavidin from Lactrodectus Hesperus, a western black widow spider, and hoefavidin from Hoeflea phototrophica, an aerobic marine bacterium, the ultimate aim being to determine their X-ray structures. These Avds were selected because of their unique sequences: lacavidin has an N-terminal Avd-like domain but a long C-terminal overhang, whereas hoefavidin was thought to be a dimeric Avd. Both these Avds could be used as novel scaffolds in biotechnological applications.