40 resultados para Point estimation
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
In the current economy situation companies try to reduce their expenses. One of the solutions is to improve the energy efficiency of the processes. It is known that the energy consumption of pumping applications range from 20 up to 50% of the energy usage in the certain industrial plants operations. Some studies have shown that 30% to 50% of energy consumed by pump systems could be saved by changing the pump or the flow control method. The aim of this thesis is to create a mobile measurement system that can calculate a working point position of a pump drive. This information can be used to determine the efficiency of the pump drive operation and to develop a solution to bring pump’s efficiency to a maximum possible value. This can allow a great reduction in the pump drive’s life cycle cost. In the first part of the thesis, a brief introduction in the details of pump drive operation is given. Methods that can be used in the project are presented. Later, the review of available platforms for the project implementation is given. In the second part of the thesis, components of the project are presented. Detailed description for each created component is given. Finally, results of laboratory tests are presented. Acquired results are compared and analyzed. In addition, the operation of created system is analyzed and suggestions for the future development are given.
Resumo:
The pumping processes requiring wide range of flow are often equipped with parallelconnected centrifugal pumps. In parallel pumping systems, the use of variable speed control allows that the required output for the process can be delivered with a varying number of operated pump units and selected rotational speed references. However, the optimization of the parallel-connected rotational speed controlled pump units often requires adaptive modelling of both parallel pump characteristics and the surrounding system in varying operation conditions. The available information required for the system modelling in typical parallel pumping applications such as waste water treatment and various cooling and water delivery pumping tasks can be limited, and the lack of real-time operation point monitoring often sets limits for accurate energy efficiency optimization. Hence, alternatives for easily implementable control strategies which can be adopted with minimum system data are necessary. This doctoral thesis concentrates on the methods that allow the energy efficient use of variable speed controlled parallel pumps in system scenarios in which the parallel pump units consist of a centrifugal pump, an electric motor, and a frequency converter. Firstly, the suitable operation conditions for variable speed controlled parallel pumps are studied. Secondly, methods for determining the output of each parallel pump unit using characteristic curve-based operation point estimation with frequency converter are discussed. Thirdly, the implementation of the control strategy based on real-time pump operation point estimation and sub-optimization of each parallel pump unit is studied. The findings of the thesis support the idea that the energy efficiency of the pumping can be increased without the installation of new, more efficient components in the systems by simply adopting suitable control strategies. An easily implementable and adaptive control strategy for variable speed controlled parallel pumping systems can be created by utilizing the pump operation point estimation available in modern frequency converters. Hence, additional real-time flow metering, start-up measurements, and detailed system model are unnecessary, and the pumping task can be fulfilled by determining a speed reference for each parallel-pump unit which suggests the energy efficient operation of the pumping system.
Resumo:
Fluid handling systems such as pump and fan systems are found to have a significant potential for energy efficiency improvements. To deliver the energy saving potential, there is a need for easily implementable methods to monitor the system output. This is because information is needed to identify inefficient operation of the fluid handling system and to control the output of the pumping system according to process needs. Model-based pump or fan monitoring methods implemented in variable speed drives have proven to be able to give information on the system output without additional metering; however, the current model-based methods may not be usable or sufficiently accurate in the whole operation range of the fluid handling device. To apply model-based system monitoring in a wider selection of systems and to improve the accuracy of the monitoring, this paper proposes a new method for pump and fan output monitoring with variable-speed drives. The method uses a combination of already known operating point estimation methods. Laboratory measurements are used to verify the benefits and applicability of the improved estimation method, and the new method is compared with five previously introduced model-based estimation methods. According to the laboratory measurements, the new estimation method is the most accurate and reliable of the model-based estimation methods.
Resumo:
Fan systems are responsible for approximately 10% of the electricity consumption in industrial and municipal sectors, and it has been found that there is energy-saving potential in these systems. To this end, variable speed drives (VSDs) are used to enhance the efficiency of fan systems. Usually, fan system operation is optimized based on measurements of the system, but there are seldom readily installed meters in the system that can be used for the purpose. Thus, sensorless methods are needed for the optimization of fan system operation. In this thesis, methods for the fan operating point estimation with a variable speed drive are studied and discussed. These methods can be used for the energy efficient control of the fan system without additional measurements. The operation of these methods is validated by laboratory measurements and data from an industrial fan system. In addition to their energy consumption, condition monitoring of fan systems is a key issue as fans are an integral part of various production processes. Fan system condition monitoring is usually carried out with vibration measurements, which again increase the system complexity. However, variable speed drives can already be used for pumping system condition monitoring. Therefore, it would add to the usability of a variablespeed- driven fan system if the variable speed drive could be used as a condition monitoring device. In this thesis, sensorless detection methods for three lifetime-reducing phenomena are suggested: these are detection of the fan contamination build-up, the correct rotational direction, and the fan surge. The methods use the variable speed drive monitoring and control options for the detection along with simple signal processing methods, such as power spectrum density estimates. The methods have been validated by laboratory measurements. The key finding of this doctoral thesis is that a variable speed drive can be used on its own as a monitoring and control device for the fan system energy efficiency, and it can also be used in the detection of certain lifetime-reducing phenomena.
Resumo:
Työn tavoitteena on poistaa tulostettujen lentoratataulukoiden ja laskukoneen tarve pitkän matkan ammunnassa, sekä myös parantaa osumapisteen arvioinnin tarkkuutta ja nopeutta. Tavoite saavutetaan mobiililaitteelle kehitettävällä ulkoballistiikkasovelluk-sella, joka mallintaa luotien lentoratoja Arthur J. Pejsan kaavojen avulla. Työ tutkii sovelluksen käytön etuja sekä verifioi tulokset käytännön testein ja vertaamalla kilpaileviin hyväksihavaittuihin sovelluksiin.
Resumo:
Software engineering is criticized as not being engineering or 'well-developed' science at all. Software engineers seem not to know exactly how long their projects will last, what they will cost, and will the software work properly after release. Measurements have to be taken in software projects to improve this situation. It is of limited use to only collect metrics afterwards. The values of the relevant metrics have to be predicted, too. The predictions (i.e. estimates) form the basis for proper project management. One of the most painful problems in software projects is effort estimation. It has a clear and central effect on other project attributes like cost and schedule, and to product attributes like size and quality. Effort estimation can be used for several purposes. In this thesis only the effort estimation in software projects for project management purposes is discussed. There is a short introduction to the measurement issues, and some metrics relevantin estimation context are presented. Effort estimation methods are covered quite broadly. The main new contribution in this thesis is the new estimation model that has been created. It takes use of the basic concepts of Function Point Analysis, but avoids the problems and pitfalls found in the method. It is relativelyeasy to use and learn. Effort estimation accuracy has significantly improved after taking this model into use. A major innovation related to the new estimationmodel is the identified need for hierarchical software size measurement. The author of this thesis has developed a three level solution for the estimation model. All currently used size metrics are static in nature, but this new proposed metric is dynamic. It takes use of the increased understanding of the nature of the work as specification and design work proceeds. It thus 'grows up' along with software projects. The effort estimation model development is not possible without gathering and analyzing history data. However, there are many problems with data in software engineering. A major roadblock is the amount and quality of data available. This thesis shows some useful techniques that have been successful in gathering and analyzing the data needed. An estimation process is needed to ensure that methods are used in a proper way, estimates are stored, reported and analyzed properly, and they are used for project management activities. A higher mechanism called measurement framework is also introduced shortly. The purpose of the framework is to define and maintain a measurement or estimationprocess. Without a proper framework, the estimation capability of an organization declines. It requires effort even to maintain an achieved level of estimationaccuracy. Estimation results in several successive releases are analyzed. It isclearly seen that the new estimation model works and the estimation improvementactions have been successful. The calibration of the hierarchical model is a critical activity. An example is shown to shed more light on the calibration and the model itself. There are also remarks about the sensitivity of the model. Finally, an example of usage is shown.
Resumo:
Cost estimation is an important, but challenging process when designing a new product or a feature of it, verifying the product prices given by suppliers or planning a cost saving actions of existing products. It is even more challenging when the product is highly modular, not a bulk product. In general, cost estimation techniques can be divided into two main groups - qualitative and quantitative techniques - which can further be classified into more detailed methods. Generally, qualitative techniques are preferable when comparing alternatives and quantitative techniques when cost relationships can be found. The main objective of this thesis was to develop a method on how to estimate costs of internally manufactured and commercial elevator landing doors. Because of the challenging product structure, the proposed cost estimation framework is developed under three different levels based on past cost information available. The framework consists of features from both qualitative and quantitative cost estimation techniques. The starting point for the whole cost estimation process is an unambiguous, hierarchical product structure so that the product can be classified into controllable parts and is then easier to handle. Those controllable parts can then be compared to existing past cost knowledge of similar parts and create as accurate cost estimates as possible by that way.
Resumo:
The aim of this master’s thesis is to develop an algorithm to calculate the cable network for heat and power station CHGRES. This algorithm includes important aspect which has an influence on the cable network reliability. Moreover, according to developed algorithm, the optimal solution for modernization cable system from economical and technical point of view was obtained. The conditions of existing cable lines show that replacement is necessary. Otherwise, the fault situation would happen. In this case company would loss not only money but also its prestige. As a solution, XLPE single core cables are more profitable than other types of cable considered in this work. Moreover, it is presented the dependence of value of short circuit current on number of 10/110 kV transformers connected in parallel between main grid and considered 10 kV busbar and how it affects on final decision. Furthermore, the losses of company in power (capacity) market due to fault situation are presented. These losses are commensurable with investment to replace existing cable system.
Resumo:
Mathematical models often contain parameters that need to be calibrated from measured data. The emergence of efficient Markov Chain Monte Carlo (MCMC) methods has made the Bayesian approach a standard tool in quantifying the uncertainty in the parameters. With MCMC, the parameter estimation problem can be solved in a fully statistical manner, and the whole distribution of the parameters can be explored, instead of obtaining point estimates and using, e.g., Gaussian approximations. In this thesis, MCMC methods are applied to parameter estimation problems in chemical reaction engineering, population ecology, and climate modeling. Motivated by the climate model experiments, the methods are developed further to make them more suitable for problems where the model is computationally intensive. After the parameters are estimated, one can start to use the model for various tasks. Two such tasks are studied in this thesis: optimal design of experiments, where the task is to design the next measurements so that the parameter uncertainty is minimized, and model-based optimization, where a model-based quantity, such as the product yield in a chemical reaction model, is optimized. In this thesis, novel ways to perform these tasks are developed, based on the output of MCMC parameter estimation. A separate topic is dynamical state estimation, where the task is to estimate the dynamically changing model state, instead of static parameters. For example, in numerical weather prediction, an estimate of the state of the atmosphere must constantly be updated based on the recently obtained measurements. In this thesis, a novel hybrid state estimation method is developed, which combines elements from deterministic and random sampling methods.
Resumo:
Selostus: Ayrshire-ensikoiden koelypsykohtaisen maidontuotannon perinnölliset tunnusluvut laktaation eri vaiheissa
Resumo:
Selostus: Maassa olevan nitraattitypen arviointi simulointimallin avulla
Resumo:
Abstract