52 resultados para Persistent organic pollutant
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Electrokinetics has emerged as a potential technique for in situ soil remediation and especially unique because of the ability to work in low permeability soil. In electrokinetic remediation, non-polar contaminants like most organic compounds are transported primarily by electroosmosis, thus the process is effective only if the contaminants are soluble in pore fluid. Therefore, enhancement is needed to improve mobility of these hydrophobic compounds, which tend to adsorb strongly to the soil. On the other hand, as a novel and rapidly growing science, the applications of ultrasound in environmental technology hold a promising future. Compared to conventional methods, ultrasonication can bring several benefits such as environmental friendliness (no toxic chemical are used or produced), low cost, and compact instrumentation. It also can be applied onsite. Ultrasonic energy applied into contaminated soils can increase desorption and mobilization of contaminants and porosity and permeability of soil through developing of cavitation. The research investigated the coupling effect of the combination of these two techniques, electrokinetics and ultrasonication, in persistent organic pollutant removal from contaminated low permeability clayey soil (with kaolin as a model medium). The preliminary study checked feasibility of ultrasonic treatment of kaolin highly contaminated by persistent organic pollutants (POPs). The laboratory experiments were conducted in various conditions (moisture, frequency, power, duration time, initial concentration) to examine the effects of these parameters on the treatment process. Experimental results showed that ultrasonication has a potential to remove POPs, although the removal efficiencies were not high with short duration time. The study also suggested intermittent ultrasonication over longer time as an effective means to increase the removal efficiencies. Then, experiments were conducted to compare the performances among electrokinetic process alone and electrokinetic processes combined with surfactant addition and mainly with ultrasonication, in designed cylinders (with filtercloth separating central part and electrolyte parts) and in open pans. Combined electrokinetic and ultrasonic treatment did prove positive coupling effect compared to each single process alone, though the level of enhancement is not very significant. The assistance of ultrasound in electrokinetic remediation can help reduce POPs from clayey soil by improving the mobility of hydrophobic organic compounds and degrading these contaminants through pyrolysis and oxidation. Ultrasonication also sustains higher current and increases electroosmotic flow. Initial contaminant concentration is an essential input parameter that can affect the removal effectiveness.
Resumo:
This thesis describes the occurrence and sources of selected persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and hexachlorocyclohexanes (HCHs) in the northern watershed of Lake Victoria. Sediments and fish were collected from three highly polluted embayments (i.e. Murchison Bay, Napoleon Gulf and Thurston Bay) of the lake. The analysis for PCDD/Fs, PCBs and PBDEs was done using a high resolution mass spectrometer coupled to a gas chromatograph (GC), and a GC equipped with an electron capture detector was used for HCHs. Total (Σ) PCDD/Fs, PCBs and PBDEs in sediments ranged from 3.19 to 478, 313 to 4325 and 60.8 to 179 pg g-1 dry weight (dw), respectively. The highest concentrations of pollutants were found at sites close to industrial areas and wastewater discharge points. The maximum concentrations of PCDD/Fs, PCBs, PBDEs and HCHs in fish muscle homogenates were 49, 779, 495 and 45,900 pg g-1 wet weight (ww), respectively. The concentrations of the pollutants in Nile perch (Lates niloticus) were significantly greater than those in Nile tilapia (Oreochromis niloticus), possibly due to differences in trophic level and dietary feeding habits among fish species. World Health Organization-toxic equivalency quotient (WHO2005-TEQ) values in the sediments were up to 4.24 pg g-1 dw for PCDD/Fs and 0.55 pg TEQ g-1 dw for the 12 dioxin-like PCBs (dl-PCBs). 23.1% of the samples from the Napoleon Gulf were above the interim sediment quality guideline value of 0.85 pg WHO-TEQ g-1 dw set by the Canadian Council for Ministers of the Environment. The WHO2005-TEQs in fish were 0.001-0.16 pg g-1 for PCDD/Fs and 0.001-0.31 pg g-1 ww for dl- PCBs. The TEQ values were within a permissible level of 3.5 pg g−1 ww recommended by the European Commission. Based on the Commission set TEQs and minimum risk level criteria formulated by the Agency for Toxic Substances and Disease Registry, the consumption of fish from Lake Victoria gives no indication of health risks associated to PCDD/Fs and PCBs. Principal component analysis (PCA) indicated that anthropogenic activities such as agricultural straw open burning, medical waste incinerators and municipal solid waste combustors were the major sources of PCDD/Fs in the watershed of Lake Victoria. The ratios of α-/γ-HCH varied from 0.89 to 1.68 suggesting that the highest HCH residues mainly came from earlier usage and fresh γ-HCH (lindane). In the present study, the concentration of POPs in fish were not significantly related to those in sediments, and the biota sediment accumulation factor (BSAF) concept was found to be a poor predictor of the bioavailability and bioaccumulation of environmental pollutants.
Resumo:
Marine mammals are exposed to persistent organic pollutants (POPs), which may be biotransformed to metabolites some of which are highly toxic. Both POPs and their metabolites may lead to adverse health effects, which have been studied using various biomarkers. Changes in endocrine homeostasis have been suggested to be sensitive biomarkers for contaminant-related effects. The overall objective of this doctoral thesis was to investigate biotransformation capacity of POPs and their potential endocrine disruptive effects in two contrasting ringed seal populations from the low contaminated Svalbard area and from the highly contaminated Baltic Sea. Biotransformation capacity was studied by determining the relationships between congener-specific patterns and concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs) and their hydroxyl (OH)- and/or methylsulfonyl (MeSO2)-metabolites, and catalytic activities of hepatic xenobiotic-metabolizing phase I and II enzymes. The results suggest that the biotransformation of PCBs, PBDEs and toxaphenes in ringed seals depends on the congener-specific halogen-substitution pattern. Biotransformation products detected in the seals included OH-PCBs, MeSO2-PCBs and –DDE, pentachlorophenol, 4-OHheptachlorostyrene, and to a minor extent OH-PBDEs. The effects of life history state (moulting and fasting) on contaminant status and potential biomarkers for endocrine disruption, including hormone and vitamin homeostasis, were investigated in the low contaminated ringed seal population from Svalbard. Moulting/fasting status strongly affected thyroid, vitamin A and calcitriol homeostasis, body condition and concentrations of POPs and their OH-metabolites. In contrast, moulting/fasting status was not associated with variations in vitamin E levels. Endocrine disruptive effects on multiple endpoints were investigated in the two contrasting ringed seal populations. The results suggest that thyroid, vitamin A and calcitriol homeostasis may be affected by the exposure of contaminants and/or their metabolites in the Baltic ringed seals. Complex and non-linear relationships were observed between the contaminant levels and the endocrine variables. Positive relationships between circulating free and total thyroid hormone concentration ratios and OH-PCBs suggest that OH-PCBs may mediate the disruption of thyroid hormone transport in plasma. Species differences in thyroid and bone-related effects of contaminants were studied in ringed and grey seals from low contaminated references areas and from the highly contaminated Baltic Sea. The results indicate that these two species living at the same environment approximately at the same trophic level respond in a very different way to contaminant exposure. The results of this thesis suggest that the health status of the Baltic ringed seals has still improved during the last decade. PCB and DDE levels have decreased in these seals and the contaminant-related effects are different today than a decade ago. The health of the Baltic ringed seals is still suggested to be affected by the contaminant exposure. At the present level of the contaminant exposure the Baltic ringed seals seem to be at a zone where their body is able to compensate for the contaminant-mediated endocrine disruption. Based on the results of this thesis, several recommendations that could be applied on monitoring and assessing risk for contaminant effects are provided. Circulating OH-metabolites should be included in monitoring and risk assessment programs due to their high toxic potential. It should be noted that endogenous variables may have complex and highly variable responses to contaminant exposure including non-linear responses. These relationships may be further confounded by life history status. Therefore, it is highly recommended that when using variables related to endocrine homeostasis to investigate/monitor or assess the risk of contaminant effects in seals, the life history status of the animal should be carefully taken into consideration. This applies especially when using thyroid, vitamin A or calcitriolrelated parameters during moulting/fasting period. Extrapolations between species for assessing risk for contaminant effects in phocid seals should be avoided.
Resumo:
This report examines the human impact on the subarctic environment of the joint border area of Norway, Finland and Russia. The aim is to present the current state and recent changes that have taken place in the region. The main threat to the environment is the Pechenganikel mining and metallurgical industrial combine in the towns of Nikel and Zapolyarny in the Kola Peninsula. Emissions from this complex include high levels of heavy metals, persistent organic pollutants and sulfur dioxide. Pollution, along with climate change, water level regulation and other anthropogenic effects, has affected the aquatic ecosystems in the joint border area. The main heavy metals in the area are copper and nickel, the highest concentrations of which are measured near the combine. Direct discharge of sewage into the river continues and airborne heavy metal particles are also deposited to areas farther away. Climate changeinduced increase in temperature and precipitation in the Kola Peninsula is evident. Water level regulation with seven hydropower plants in the Pasvik River have changed it into a series of lakes and lake-like reservoirs. This report discusses modelling, which was enabled to estimate the effect of climate change on Lake Inarijärvi and the Pasvik River hydrology, water level fluctuation and ecology and to follow the sulfur dioxide emissions emitted from the Pechenganikel. Effects of pollution on the nature and concentrations of the main pollutants were studied and climate change in the border area and its effects on the ecology were estimated. Also the effects of water level regulation on the ecological status of the aquatic ecosystems were addressed.
Resumo:
Substances emitted into the atmosphere by human activities in urban and industrial areas cause environmental problems such as air quality degradation, respiratory diseases, climate change, global warming, and stratospheric ozone depletion. Volatile organic compounds (VOCs) are major air pollutants, emitted largely by industry, transportation and households. Many VOCs are toxic, and some are considered to be carcinogenic, mutagenic, or teratogenic. A wide spectrum of VOCs is readily oxidized photocatalytically. Photocatalytic oxidation (PCO) over titanium dioxide may present a potential alternative to air treatment strategies currently in use, such as adsorption and thermal treatment, due to its advantageous activity under ambient conditions, although higher but still mild temperatures may also be applied. The objective of the present research was to disclose routes of chemical reactions, estimate the kinetics and the sensitivity of gas-phase PCO to reaction conditions in respect of air pollutants containing heteroatoms in their molecules. Deactivation of the photocatalyst and restoration of its activity was also taken under consideration to assess the practical possibility of the application of PCO to the treatment of air polluted with VOCs. UV-irradiated titanium dioxide was selected as a photocatalyst for its chemical inertness, non-toxic character and low cost. In the present work Degussa P25 TiO2 photocatalyst was mostly used. In transient studies platinized TiO2 was also studied. The experimental research into PCO of following VOCs was undertaken: - methyl tert-butyl ether (MTBE) as the basic oxygenated motor fuel additive and, thus, a major non-biodegradable pollutant of groundwater; - tert-butyl alcohol (TBA) as the primary product of MTBE hydrolysis and PCO; - ethyl mercaptan (ethanethiol) as one of the reduced sulphur pungent air pollutants in the pulp-and-paper industry; - methylamine (MA) and dimethylamine (DMA) as the amino compounds often emitted by various industries. The PCO of VOCs was studied using a continuous-flow mode. The PCO of MTBE and TBA was also studied by transient mode, in which carbon dioxide, water, and acetone were identified as the main gas-phase products. The volatile products of thermal catalytic oxidation (TCO) of MTBE included 2-methyl-1-propene (2-MP), carbon monoxide, carbon dioxide and water; TBA decomposed to 2-MP and water. Continuous PCO of 4 TBA proceeded faster in humid air than dry air. MTBE oxidation, however, was less sensitive to humidity. The TiO2 catalyst was stable during continuous PCO of MTBE and TBA above 373 K, but gradually lost activity below 373 K; the catalyst could be regenerated by UV irradiation in the absence of gas-phase VOCs. Sulphur dioxide, carbon monoxide, carbon dioxide and water were identified as ultimate products of PCO of ethanethiol. Acetic acid was identified as a photocatalytic oxidation by-product. The limits of ethanethiol concentration and temperature, at which the reactor performance was stable for indefinite time, were established. The apparent reaction kinetics appeared to be independent of the reaction temperature within the studied limits, 373 to 453 K. The catalyst was completely and irreversibly deactivated with ethanethiol TCO. Volatile PCO products of MA included ammonia, nitrogen dioxide, nitrous oxide, carbon dioxide and water. Formamide was observed among DMA PCO products together with others similar to the ones of MA. TCO for both substances resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide and water. No deactivation of the photocatalyst during the multiple long-run experiments was observed at the concentrations and temperatures used in the study. PCO of MA was also studied in the aqueous phase. Maximum efficiency was achieved in an alkaline media, where MA exhibited high fugitivity. Two mechanisms of aqueous PCO – decomposition to formate and ammonia, and oxidation of organic nitrogen directly to nitrite - lead ultimately to carbon dioxide, water, ammonia and nitrate: formate and nitrite were observed as intermediates. A part of the ammonia formed in the reaction was oxidized to nitrite and nitrate. This finding helped in better understanding of the gasphase PCO pathways. The PCO kinetic data for VOCs fitted well to the monomolecular Langmuir- Hinshelwood (L-H) model, whereas TCO kinetic behaviour matched the first order process for volatile amines and the L-H model for others. It should be noted that both LH and the first order equations were only the data fit, not the real description of the reaction kinetics. The dependence of the kinetic constants on temperature was established in the form of an Arrhenius equation.
Resumo:
Advanced oxidation processes (AOPs) have been studied and developed to suffice the effective removal of refractory and toxic compounds in polluted water. The quality and cost of wastewater treatment need improvements, and electric discharge technology has a potential to make a significant difference compared to other established AOPs based on energy efficiency. The generation of active oxidant species such as ozone and hydroxyl radicals by high voltage discharge is a relatively new technology for water treatment. Gas-phase pulsed corona discharge (PCD), where a treated aqueous solution is dispersed between corona-producing electrodes free of the dielectric barriers, was developed as an alternative approach to the problem. The short living radicals and ozone formed in the gas phase and at the gas-liquid interface react with dissolved impurities. PCD equipment has a relatively simple configuration, and with the reactor in an enclosed compartment, it is insensitive towards gas humidity and does not need the gas transport. In this thesis, PCD was used to study and evaluate the energy efficiency for degrading various organic compounds, as well as the chemistry of the oxidation products formed. The experiments investigate the aqueous oxidation of phenol, humic substances, pharmaceutical compounds (paracetamol, ibuprofen, indomethacin, salicylic acids, -estradiol), as well as lignin degradation and transformation to aldehydes. The study aims to establish the influence of initial concentration of the target pollutant, the pulsed discharge parameters, gas phase composition and the pH on the oxidation kinetics and the efficiency. Analytical methods to measure the concentrations of the target compounds and their by-products include HPLC, spectrophotometry, TOC and capillary electrophoresis. The results of the research included in this summary are presented in the attached publications and manuscripts accepted for publication. Pulsed corona discharge proved to be highly effective in oxidizing each of the target compounds, surpassing the closest competitor, conventional ozonation. The increase in oxidation efficiencies for some compounds in oxygen media and at lower pulse repetition frequencies shows a significant role of ozone. The role of the ·OH radicals was established in the surface reactions. The main oxidation products, formation of nitrates, and the lignin transformation were quantified. A compound specific approach is suggested for optimization of the PCD parameters that have the most significant impact on the oxidation energy efficiency because of the different characteristics and responses of the target compound to the oxidants, as well as different admixtures that are present in the wastewater. Further studies in the method’s safety (nitration and nitrosation of organic compounds, nitrite and nitrate formation enhancement) are needed for promoting the method.
Resumo:
Selostus: Haihtuvien orgaanisten yhdisteiden muodostuminen kuivikkeissa
Resumo:
Summary
Resumo:
Selostus: Orgaanisten happojen vaikutus porsasrehun maittavuuteen