33 resultados para Parabolic quantum wells

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis is studied the influence of uniaxial deformation of GaAs/AlGaAs quantum well structures to photoluminescence. Uniaxial deformation was applied along [110] and polarization ratio of photoluminescence at T = 77 K and 300 K was measured. Also the physical origin of photoluminescence lines in spectrum was determined and the energy band splitting value between states of heavy and light holes was estimated. It was found that the dependencies of polarization ratio on uniaxial deformation for bulk GaAs and GaAs/AlGaAs are different. Two observed lines in photoluminescence spectrum are induced by free electron recombination to energy sublevels of valence band corresponding to heavy and light holes. Those sublevels are splited due to the combination of size quantization and external pressure. The quantum splitting energy value was estimated. Also was shown a method, which allows to determine the energy splitting value of sublevels at room temperature and at comparatively low uniaxial deformation, when the other method for determining of the splitting becomes impossible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work structural, magnetic and transport properties of InGaAs quantum wells (QW) prepared by MBE with an remote Mn layer are investigated. By means of high-resolution X-ray diffractometry the structure of the samples is analyzed. It is shown that Mn ions penetrate into the QW. Influence of the thickness of GaAs spacer and annealing at 286 ºС on the properties of the system is shown. It is shown that annealing of the samples led to Mn activation and narrowing of the Mn layer. Substantial role of 2D holes in ferromagnetic ordering in Mn layer is shown. Evidence for that is observation of maximum at 25 – 55 K on the resistivity temperature dependence. Position of maximum, which is used for quantitative assessment of the Curie temperature, correlates with calculations of the Curie temperature for structures with indirect interaction via 2D holes’ channel. Dependence of the Curie temperature on the spacer thickness shows, that creation of applicable spintronic devices needs high-precision equipment to manufacture extra fine structures. The magnetotransport measurements show that charge carrier mobility is very low. This leads to deficiency of the anomalous Hall effect. At the same time, magnetic field dependences of the magnetization at different temperatures demonstrate that systems are ferromagnetically ordered. These facts, most probably, give evidence of presence of the ferromagnetic MnAs clusters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present work are reported investigations of structural, magnetic and electronic properties of GaAs/Ga1-xInxAs/GaAs quantum wells (QW) having a 0.5 - 1.8 monolayer thick Mn layer, separated from the quantum well by a 3 nm thick spacer. The structure of the samples is analyzed in details by photoluminescence and high-resolution X-ray difractometry and reflectometry, confirming that Mn atoms are practically absent from the QW. Transport properties and crystal structure are analyzed for the first time for this type of QW structures with so high mobility. Observedconductivity and the Hall effect in quantizing magnetic fields in wide temperature range, defined by transport of holes in the quantum well, demonstrate properties inherent to ferromagnetic systems with spin polarization of charge carriersin the QW. Investigation of the Shubnikov ¿ de Haas and the Hall effects gave the possibility to estimate the energy band parameters such as cyclotron mass andFermi level and calculate concentrations and mobilities of holes and show the high-quality of structures. Magnetic ordering is confirmed by the existence of the anomalous Hall effect.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Kvanttimekaniikan teoriassa suljettuja, ympäristöstään eristettyjä systeemejä koskevat tulokset ovat hyvin tunnettuja. Eräs tärkeä erityispiirre tällaisille systeemeille on, että niiden aikakehitys on unitaarista. Oletus siitä, että systeemi on suljettu, on osaltaan tietysti vain yksinkertaistus. Käytännössä kaikki kvanttimekaaniset systeemit vuorovaikuttavat ympäristönsä kanssa ja tästä johtuen niiden dynamiikka monimutkaistuu oleellisesti. Kuitenkin tietyissä tapauksissa systeemin aikakehitys voidaan ratkaista, ainakin approksimatiivisesti. Tärkeimpinä esimerkkeinä on ympäristön joko nopea tai erittäin hidas muutos kvanttisysteemin ominaiseen aikaskaalaan verrattuna. Näistä erityisesti jälkimmäinen on käyttökelpoinen oletus monissa fysikaalisissa tilanteissa. Tällöin voidaan suorittaa niin sanottu adiabaattinen approksimaatio. Sen mukaan systeemi, joka on aikakehityksen generoivan Hamiltonin operaattorin ominaistilassa, pysyy vastaavassa ominaistilassa ympäristön muuttuessa äärettömän hitaasti, mikäli systeemin eri energiatasot eivät leikkaa toisiaan. Todellisissa tilanteissa muutos ei tietenkään voi olla äärettömän hidasta ja myös energiatasojen leikkaukset ovat mahdollisia, jolloin tapahtuu transitio eri ominaistilojen välillä. Energiatasojen leikkauksilla on oleellisia vaikutuksia erittäin monissa fysikaalisissa prosesseissa ja niitä kuvaamaan on luotu monia malleja kvanttimekaniikan alkuajoista lähtien aina tähän päivään saakka. Nykyinen teknologinen kehitys on avannut uudenlaisen mahdollisuuden ilmiön kokeelliseen varmentamiseen ja hyödyntämiseen. Tämän vuoksi kyseisten mallien dynamiikan ja erityisesti energiatasojen useiden peräkkäisten leikkausten aiheuttamien koherenssi-ilmiöiden selvittäminen on tärkeää. Tässä työssä käsitellään kvanttimekaanisia kaksitasosysteemejä, joissa esiintyy energiatasojen leikkauksia sekä niiden pitkän aikavälin dynamiikkaa. Tutkielmassa perehdytään tarkemmin kahteen tiettyyn malliin. Näistä ensimmäinen, Landau-Zener -malli, on tunnetuin ja sovelluksissa käytetyin malli. Kuitenkin erityisen mielenkiinnon kohteena on niin kutsuttu parabolinen malli, jolle johdetaan eri approksimaatioita käyttäen asymptoottiset transitiotodennäköisyydet eri tilojen välille. Näitä verrataan numeerisiin tuloksiin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis is to present a solution to the quantum phase problem of the single-mode optical field. The solution is based on the use of phase shift covariant normalized positive operator measures. These measures describe realistic direct coherent state phase measurements such as the phase measurement schemes based on eight-port homodyne detection or heterodyne detection. The structure of covariant operator measures and, more generally, covariant sesquilinear form measures is analyzed in this work. Four different characterizations for phase shift covariant normalized positive operator measures are presented. The canonical covariant operator measure is definded and its properties are studied. Finally, some other suggested phase theories are introduced to investigate their connections to the covariant sesquilinear form measures.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is dedicated to investigation of the energy spectrum of one of the most anisotropic narrow-gap semiconductors, CdSb. At the beginning of the present studies even the model of its energy band structure was not clear. Measurements of galvanomagnetic effects in wide temperature range (1.6 - 300 K) and in magnetic fields up to 30 T were chosen for clarifying of the energy spectrum in the intentionally undoped CdSb single crystals and doped with shallow impurities (In, Ag). Detection of the Shubnikov - de Haas oscillations allowed estimating the fundamental energy spectrum parameters. The shapes of the Fermi surfaces of electrons (sphere) and holes (ellipsoid), the number of the equivalent extremums for valence band (2) and their positions in the Brillouin zone were determined for the first time in this work. Also anisotropy coefficients, components of the tensor of effective masses of carriers, effective masses of density of states, nonparabolicity of the conduction and valence bands, g-factor and its anisotropy for n- and p-CdSb were estimated for the first time during these studies. All the results obtained are compared with the cyclotron resonance data and the corresponding theoretical calculations for p-CdSb. This is basic information for the analyses of the complex transport properties of CdSb and for working out the energy spectrum model of the shallow energy levels of defects and impurities in this semiconductor. It was found out existence of different mechanisms of hopping conductivity in the presence of metal - insulator transition induced by magnetic field in n- and p-CdSb. Quite unusual feature opened in CdSb is that different types of hopping conductivity may take place in the same crystal depending on temperature, magnetic field or even orientation of crystal in magnetic field. Transport properties of undoped p-CdSb samples show that the anisotropy of the resistivity in weak and strong magnetic fields is determined completely by the anisotropy of the effective mass of the holes. Temperature and magnetic field dependence of the Hall coefficient and magnetoresistance is attributed to presence of two groups of holes with different concentrations and mobilities. The analysis demonstrates that below Tcr ~ 20 K and down to ~ 6 - 7 K the low-mobile carriers are itinerant holes with energy E2 ≈ 6 meV. The high-mobile carriers, at all temperatures T < Tcr, are holes activated thermally from a deeper acceptor band to itinerant states of a shallower acceptor band with energy E1 ≈ 3 meV. Analysis of temperature dependences of mobilities confirms the existence of the heavy-hole band or a non-equivalent maximum and two equivalent maxima of the light-hole valence band. Galvanomagnetic effects in n-CdSb reveal the existence of two groups of carriers. These are the electrons of a single minimum in isotropic conduction band and the itinerant electrons of the narrow impurity band, having at low temperatures the energies above the bottom of the conduction band. It is found that above this impurity band exists second impurity band of only localized states and the energy of both impurity bands depend on temperature so that they sink into the band gap when temperature is increased. The bands are splitted by the spin, and in strong magnetic fields the energy difference between them decreases and redistribution of the electrons between the two impurity bands takes place. Mobility of the conduction band carriers demonstrates that scattering in n-CdSb at low temperatures is strongly anisotropic. This is because of domination from scattering on the neutral impurity centers and increasing of the contribution to mobility from scattering by acoustic phonons when temperature increases. Metallic conductivity in zero or weak magnetic field is changed to activated conductivity with increasing of magnetic field. This exhibits a metal-insulator transition (MIT) induced by the magnetic field due to shift of the Fermi level from the interval of extended states to that of the localized states of the electron spectrum near the edge of the conduction band. The Mott variablerange hopping conductivity is observed in the low- and high-field intervals on the insulating side of the MIT. The results yield information about the density of states, the localization radius of the resonant impurity band with completely localized states and about the donor band. In high magnetic fields this band is separated from the conduction band and lies below the resonant impurity bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The questions studied in this thesis are centered around the moment operators of a quantum observable, the latter being represented by a normalized positive operator measure. The moment operators of an observable are physically relevant, in the sense that these operators give, as averages, the moments of the outcome statistics for the measurement of the observable. The main questions under consideration in this work arise from the fact that, unlike a projection valued observable of the von Neumann formulation, a general positive operator measure cannot be characterized by its first moment operator. The possibility of characterizing certain observables by also involving higher moment operators is investigated and utilized in three different cases: a characterization of projection valued measures among all the observables is given, a quantization scheme for unbounded classical variables using translation covariant phase space operator measures is presented, and, finally, a mathematically rigorous description is obtained for the measurements of rotated quadratures and phase space observables via the high amplitude limit in the balanced homodyne and eight-port homodyne detectors, respectively. In addition, the structure of the covariant phase space operator measures, which is essential for the above quantization, is analyzed in detail in the context of a (not necessarily unimodular) locally compact group as the phase space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of the thesis was to study fundamental structural and optical properties of InAs islands and In(Ga)As quantum rings. The research was carried out at the Department of Micro and Nanosciences of Helsinki University of Technology. A good surface quality can be essential for the potential applications in optoelectronic devices. For such device applications it is usually necessary to control size, density and arrangement of the islands. In order to study the dependence of the structural properties of the islands and the quantum rings on growth conditions, atomic force microscope was used. Obtained results reveal that the size and the density of the In(Ga)As quantum rings strongly depend on the growth temperature, the annealing time and the thickness of the partial capping layer. From obtained results it is possible to conclude that to get round shape islands and high density one has to use growth temperature of 500 ̊C. In the case of formation of In(Ga)As quantum rings the effect of mobility anisotropy is observed that so the shape of the rings is not symmetric. To exclude this effect it is preferable to use a higher annealing temperature of 570 ̊C. Optical properties were characterized by PL spectroscopy. PL emission was observed from buried InAs quantum dots and In(Ga)As quantum rings grown with different annealing time and temperature and covered with a various thickness of the partial capping layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis the structure and properties of imprecise quantum measurements are investigated. The starting point for this investigation is the representation of a quantum observable as a normalized positive operator measure. A general framework to describe measurement inaccuracy is presented. Requirements for accurate measurements are discussed, and the relation of inaccuracy to some optimality criteria is studied. A characterization of covariant observables is given in the case when they are imprecise versions of a sharp observable. Also the properties of such observables are studied. The case of position and momentum observables is studied. All position and momentum observables are characterized, and the joint positionmomentum measurements are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Master's thesis is devoted to semiconductor samples study using time-resolved photoluminescence. This method allows investigating recombination in semiconductor samples in order to develop quality of optoelectronic device. An additional goal was the method accommodation for low-energy-gap materials. The first chapter gives a brief intercourse into the basis of semiconductor physics. The key features of the investigated structures are noted. The usage area of the results covers saturable semiconductor absorber mirrors, disk lasers and vertical-external-cavity surface-emittinglasers. The experiment set-up is described in the second chapter. It is based on up-conversion procedure using a nonlinear crystal and involving the photoluminescent emission and the gate pulses. The limitation of the method was estimated. The first series of studied samples were grown at various temperatures and they suffered rapid thermal annealing. Further, a latticematched and metamorphically grown samples were compared. Time-resolved photoluminescence method was adapted for wavelengths up to 1.5 µm. The results allowed to specify the optimal substrate temperature for MBE process. It was found that the lattice-matched sample and the metamorphically grown sample had similar characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Thesis I discuss the exact dynamics of simple non-Markovian systems. I focus on fundamental questions at the core of non-Markovian theory and investigate the dynamics of quantum correlations under non-Markovian decoherence. In the first context I present the connection between two different non-Markovian approaches, and compare two distinct definitions of non-Markovianity. The general aim is to characterize in exemplary cases which part of the environment is responsible for the feedback of information typical of non- Markovian dynamics. I also show how such a feedback of information is not always described by certain types of master equations commonly used to tackle non-Markovian dynamics. In the second context I characterize the dynamics of two qubits in a common non-Markovian reservoir, and introduce a new dynamical effect in a wellknown model, i.e., two qubits under depolarizing channels. In the first model the exact solution of the dynamics is found, and the entanglement behavior is extensively studied. The non-Markovianity of the reservoir and reservoirmediated-interaction between the qubits cause non-trivial dynamical features. The dynamical interplay between different types of correlations is also investigated. In the second model the study of quantum and classical correlations demonstrates the existence of a new effect: the sudden transition between classical and quantum decoherence. This phenomenon involves the complete preservation of the initial quantum correlations for long intervals of time of the order of the relaxation time of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies properties of transforms based on parabolic scaling, like Curvelet-, Contourlet-, Shearlet- and Hart-Smith-transform. Essentially, two di erent questions are considered: How these transforms can characterize H older regularity and how non-linear approximation of a piecewise smooth function converges. In study of Hölder regularities, several theorems that relate regularity of a function f : R2 → R to decay properties of its transform are presented. Of particular interest is the case where a function has lower regularity along some line segment than elsewhere. Theorems that give estimates for direction and location of this line, and regularity of the function are presented. Numerical demonstrations suggest also that similar theorems would hold for more general shape of segment of low regularity. Theorems related to uniform and pointwise Hölder regularity are presented as well. Although none of the theorems presented give full characterization of regularity, the su cient and necessary conditions are very similar. Another theme of the thesis is the study of convergence of non-linear M ─term approximation of functions that have discontinuous on some curves and otherwise are smooth. With particular smoothness assumptions, it is well known that squared L2 approximation error is O(M-2(logM)3) for curvelet, shearlet or contourlet bases. Here it is shown that assuming higher smoothness properties, the log-factor can be removed, even if the function still is discontinuous.