3 resultados para Optical fibre communications

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This final project was made for the Broadband/Implementation department of TeliaSonera Finland. The question to be examined is if the operator should replace multiple ADSL connections implemented over a leased line with Multi-Dwelling access based on an Ethernet/Optical Fibre access network. The project starts with describing the technology related to these access network solu-tions and presents the technology that is used in TeliaSonera Finland's access network. It continues from the technology to describe the problem with some of the ADSL implemen-tations of TeliaSonera. The problem is the implementations done over a leased line that can cost TeliaSonera over years as much as a possible investment to extend network when there is several lines leased to the same building. The project proposes a Multi-Dwelling access as a solution to this problem and defines the circumstances when to use it. After a satisfactory solution has found the project takes a view how implementation of the solution might alter the network and a new problem is found. When used commonly to replace need of ADSL implementation Multi-Dwelling access would significantly increase optical cable congestion near operators POP. As a final deed this project also proposes a technical change to existing way to implement multi-dwelling access with EPON technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tekniikan kehitys menee vauhdilla eteenpäin ja uusi verkkotekniikoita syntyy koko ajan. Haasteita tuottavat sopivien verkkotekniikoiden löytäminen käyttöön tietylle alueelle ja joissakin tapauksissa joudutaan tyytymään kompromissiratkaisuihin. Lyhyen kantaman langattomat kommunikaatioteknologiat soveltuvat esimerkiksi haja-asutusalueille ja saaristoon, mikäli perinteisen kuidun vetäminen niille alueille ei ole mahdollista. Tässä työssä tuodaan esille niitä langallisia ja langattomia tekniikoita, jotka ovat tällä hetkellä tai tulevaisuudessa merkityksellisiä Etelä-Karjalan kannalta. Osa tekniikoista voi jäädä kokonaan pois käytöstä kymmenen vuoden sisällä tai ne voivat yhdistyä ja muuttaa muotoaan. Työn tuloksena syntyneen kartoituksen perusteella saadaan visio siitä, miltä Etelä-Karjalan tilanne näyttää vuonna 2018. Nyt on jo tiedossa Soneran puhelinlankaverkon alasajo lähivuosina ja kuidun vetäminen viemäriin viemäröintitöiden yhteydessä. Tulevaisuuden kaistankäyttötarpeet ja erilaisten palvelujen lisääntyminen edesauttavat viihdepalveluiden tarjonnan monipuolistumista. Open Access ja triple-play ovat tulevaisuuden termejä. Viihteen lisäksi myös muilla eri osa-alueilla kuten työelämässä, sairaaloissa ja kouluissa on tarvetta laajakaistaisille monipalveluille.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is done as a part of project called FuncMama that is a project between Technical Research Centre of Finland (VTT), Oulu University (OY), Lappeenranta University of Technology (LUT) and Finnish industrial partners. Main goal of the project is to manufacture electric and mechanical components from mixed materials using laser sintering. Aim of this study was to create laser sintered pieces from ceramic material and monitor the sintering event by using spectrometer. Spectrometer is a device which is capable to record intensity of different wavelengths in relation with time. In this study the monitoring of laser sintering was captured with the equipment which consists of Ocean Optics spectrometer, optical fiber and optical lens (detector head). Light from the sintering process hit first to the lens system which guides the light in to the optical fibre. Optical fibre transmits the light from the sintering process to the spectrometer where wavelengths intensity level information is detected. The optical lens of the spectrometer was rigidly set and did not move along with the laser beam. Data which was collected with spectrometer from the laser sintering process was converted with Excel spreadsheet program for result’s evaluation. Laser equipment used was IPG Photonics pulse fibre laser. Laser parameters were kept mainly constant during experimental part and only sintering speed was changed. That way it was possible to find differences in the monitoring results without fear of too many parameters mixing together and affecting to the conclusions. Parts which were sintered had one layer and size of 5 x 5 mm. Material was CT2000 – tape manufactured by Heraeus which was later on post processed to powder. Monitoring of different sintering speeds was tested by using CT2000 reference powder. Moreover tests how different materials effect to the process monitoring were done by adding foreign powder Du Pont 951 which had suffered in re-grinding and which was more reactive than CT2000. By adding foreign material it simulates situation where two materials are accidently mixed together and it was studied if that can be seen with the spectrometer. It was concluded in this study that with the spectrometer it is possible to detect changes between different laser sintering speeds. When the sintering speed is lowered the intensity level of light is higher from the process. This is a result of higher temperature at the sintering spot and that can be noticed with the spectrometer. That indicates it could be possible to use spectrometer as a tool for process observation and support the idea of having system that can help setting up the process parameter window. Also important conclusion was how well the adding of foreign material could be seen with the spectrometer. When second material was added a significant intensity level raise could be noticed in that part where foreign material was mixed. That indicates it is possible to see if there are any variations in the material or if there are more materials mixed together. Spectrometric monitoring of laser sintering could be useful tool for process window observation and temperature controlling of the sintering process. For example if the process window for specific material is experimentally determined to get wanted properties and satisfying sintering speed. It is possible if the data is constantly recorded that the results can show faults in the part texture between layers. Changes between the monitoring data and the experimentally determined values can then indicate changes in the material being generated by material faults or by wrong process parameters. The results of this study show that spectrometer could be one possible tool for monitoring. But to get in that point where this all can be made possible much more researching is needed.