13 resultados para Non-linear systems
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
A rotating machine usually consists of a rotor and bearings that supports it. The nonidealities in these components may excite vibration of the rotating system. The uncontrolled vibrations may lead to excessive wearing of the components of the rotating machine or reduce the process quality. Vibrations may be harmful even when amplitudes are seemingly low, as is usually the case in superharmonic vibration that takes place below the first critical speed of the rotating machine. Superharmonic vibration is excited when the rotational velocity of the machine is a fraction of the natural frequency of the system. In such a situation, a part of the machine’s rotational energy is transformed into vibration energy. The amount of vibration energy should be minimised in the design of rotating machines. The superharmonic vibration phenomena can be studied by analysing the coupled rotor-bearing system employing a multibody simulation approach. This research is focused on the modelling of hydrodynamic journal bearings and rotorbearing systems supported by journal bearings. In particular, the non-idealities affecting the rotor-bearing system and their effect on the superharmonic vibration of the rotating system are analysed. A comparison of computationally efficient journal bearing models is carried out in order to validate one model for further development. The selected bearing model is improved in order to take the waviness of the shaft journal into account. The improved model is implemented and analyzed in a multibody simulation code. A rotor-bearing system that consists of a flexible tube roll, two journal bearings and a supporting structure is analysed employing the multibody simulation technique. The modelled non-idealities are the shell thickness variation in the tube roll and the waviness of the shaft journal in the bearing assembly. Both modelled non-idealities may cause subharmonic resonance in the system. In multibody simulation, the coupled effect of the non-idealities can be captured in the analysis. Additionally one non-ideality is presented that does not excite the vibrations itself but affects the response of the rotorbearing system, namely the waviness of the bearing bushing which is the non-rotating part of the bearing system. The modelled system is verified with measurements performed on a test rig. In the measurements the waviness of bearing bushing was not measured and therefore it’s affect on the response was not verified. In conclusion, the selected modelling approach is an appropriate method when analysing the response of the rotor-bearing system. When comparing the simulated results to the measured ones, the overall agreement between the results is concluded to be good.
Resumo:
Nowadays problem of solving sparse linear systems over the field GF(2) remain as a challenge. The popular approach is to improve existing methods such as the block Lanczos method (the Montgomery method) and the Wiedemann-Coppersmith method. Both these methods are considered in the thesis in details: there are their modifications and computational estimation for each process. It demonstrates the most complicated parts of these methods and gives the idea how to improve computations in software point of view. The research provides the implementation of accelerated binary matrix operations computer library which helps to make the progress steps in the Montgomery and in the Wiedemann-Coppersmith methods faster.
Resumo:
The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.
Resumo:
The primary objective is to identify the critical factors that have a natural impact on the performance measurement system. It is important to make correct decisions related to measurement systems, which are based on the complex business environment. The performance measurement system is combined with a very complex non-linear factor. The Six Sigma methodology is seen as one potential approach at every organisational level. It will be linked to the performance and financial measurement as well as to the analytical thinking on which the viewpoint of management depends. The complex systems are connected to the customer relationship study. As the primary throughput can be seen in a new well-defined performance measurement structure that will also be facilitated as will an analytical multifactor system. These critical factors should also be seen as a business innovation opportunity at the same time. This master's thesis has been divided into two different theoretical parts. The empirical part consists of both action-oriented and constructive research approaches with an empirical case study. The secondary objective is to seek a competitive advantage factor with a new analytical tool and the Six Sigma thinking. Process and product capabilities will be linked to the contribution of complex system. These critical barriers will be identified by the performance measuring system. The secondary throughput can be recognised as the product and the process cost efficiencies which throughputs are achieved with an advantage of management. The performance measurement potential is related to the different productivity analysis. Productivity can be seen as one essential part of the competitive advantage factor.
Resumo:
In this Thesis I discuss the exact dynamics of simple non-Markovian systems. I focus on fundamental questions at the core of non-Markovian theory and investigate the dynamics of quantum correlations under non-Markovian decoherence. In the first context I present the connection between two different non-Markovian approaches, and compare two distinct definitions of non-Markovianity. The general aim is to characterize in exemplary cases which part of the environment is responsible for the feedback of information typical of non- Markovian dynamics. I also show how such a feedback of information is not always described by certain types of master equations commonly used to tackle non-Markovian dynamics. In the second context I characterize the dynamics of two qubits in a common non-Markovian reservoir, and introduce a new dynamical effect in a wellknown model, i.e., two qubits under depolarizing channels. In the first model the exact solution of the dynamics is found, and the entanglement behavior is extensively studied. The non-Markovianity of the reservoir and reservoirmediated-interaction between the qubits cause non-trivial dynamical features. The dynamical interplay between different types of correlations is also investigated. In the second model the study of quantum and classical correlations demonstrates the existence of a new effect: the sudden transition between classical and quantum decoherence. This phenomenon involves the complete preservation of the initial quantum correlations for long intervals of time of the order of the relaxation time of the system.
Resumo:
In this thesis, general approach is devised to model electrolyte sorption from aqueous solutions on solid materials. Electrolyte sorption is often considered as unwanted phenomenon in ion exchange and its potential as an independent separation method has not been fully explored. The solid sorbents studied here are porous and non-porous organic or inorganic materials with or without specific functional groups attached on the solid matrix. Accordingly, the sorption mechanisms include physical adsorption, chemisorption on the functional groups and partition restricted by electrostatic or steric factors. The model is tested in four Cases Studies dealing with chelating adsorption of transition metal mixtures, physical adsorption of metal and metalloid complexes from chloride solutions, size exclusion of electrolytes in nano-porous materials and electrolyte exclusion of electrolyte/non-electrolyte mixtures. The model parameters are estimated using experimental data from equilibrium and batch kinetic measurements, and they are used to simulate actual single-column fixed-bed separations. Phase equilibrium between the solution and solid phases is described using thermodynamic Gibbs-Donnan model and various adsorption models depending on the properties of the sorbent. The 3-dimensional thermodynamic approach is used for volume sorption in gel-type ion exchangers and in nano-porous adsorbents, and satisfactory correlation is obtained provided that both mixing and exclusion effects are adequately taken into account. 2-Dimensional surface adsorption models are successfully applied to physical adsorption of complex species and to chelating adsorption of transition metal salts. In the latter case, comparison is also made with complex formation models. Results of the mass transport studies show that uptake rates even in a competitive high-affinity system can be described by constant diffusion coefficients, when the adsorbent structure and the phase equilibrium conditions are adequately included in the model. Furthermore, a simplified solution based on the linear driving force approximation and the shrinking-core model is developed for very non-linear adsorption systems. In each Case Study, the actual separation is carried out batch-wise in fixed-beds and the experimental data are simulated/correlated using the parameters derived from equilibrium and kinetic data. Good agreement between the calculated and experimental break-through curves is usually obtained indicating that the proposed approach is useful in systems, which at first sight are very different. For example, the important improvement in copper separation from concentrated zinc sulfate solution at elevated temperatures can be correctly predicted by the model. In some cases, however, re-adjustment of model parameters is needed due to e.g. high solution viscosity.
Resumo:
The present manuscript represents the completion of a research path carried forward during my doctoral studies in the University of Turku. It contains information regarding my scientific contribution to the field of open quantum systems, accomplished in collaboration with other scientists. The main subject investigated in the thesis is the non-Markovian dynamics of open quantum systems with focus on continuous variable quantum channels, e.g. quantum Brownian motion models. Non-Markovianity is here interpreted as a manifestation of the existence of a flow of information exchanged by the system and environment during the dynamical evolution. While in Markovian systems the flow is unidirectional, i.e. from the system to the environment, in non-Markovian systems there are time windows in which the flow is reversed and the quantum state of the system may regain coherence and correlations previously lost. Signatures of a non-Markovian behavior have been studied in connection with the dynamics of quantum correlations like entanglement or quantum discord. Moreover, in the attempt to recognisee non-Markovianity as a resource for quantum technologies, it is proposed, for the first time, to consider its effects in practical quantum key distribution protocols. It has been proven that security of coherent state protocols can be enhanced using non-Markovian properties of the transmission channels. The thesis is divided in two parts: in the first part I introduce the reader to the world of continuous variable open quantum systems and non-Markovian dynamics. The second part instead consists of a collection of five publications inherent to the topic.
Resumo:
In this work mathematical programming models for structural and operational optimisation of energy systems are developed and applied to a selection of energy technology problems. The studied cases are taken from industrial processes and from large regional energy distribution systems. The models are based on Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear Programming (MINLP) and on a hybrid approach of a combination of Non-Linear Programming (NLP) and Genetic Algorithms (GA). The optimisation of the structure and operation of energy systems in urban regions is treated in the work. Firstly, distributed energy systems (DES) with different energy conversion units and annual variations of consumer heating and electricity demands are considered. Secondly, district cooling systems (DCS) with cooling demands for a large number of consumers are studied, with respect to a long term planning perspective regarding to given predictions of the consumer cooling demand development in a region. The work comprises also the development of applications for heat recovery systems (HRS), where paper machine dryer section HRS is taken as an illustrative example. The heat sources in these systems are moist air streams. Models are developed for different types of equipment price functions. The approach is based on partitioning of the overall temperature range of the system into a number of temperature intervals in order to take into account the strong nonlinearities due to condensation in the heat recovery exchangers. The influence of parameter variations on the solutions of heat recovery systems is analysed firstly by varying cost factors and secondly by varying process parameters. Point-optimal solutions by a fixed parameter approach are compared to robust solutions with given parameter variation ranges. In the work enhanced utilisation of excess heat in heat recovery systems with impingement drying, electricity generation with low grade excess heat and the use of absorption heat transformers to elevate a stream temperature above the excess heat temperature are also studied.
Resumo:
Teollisuuden tuotannon eri prosessien optimointi on hyvin ajankohtainen aihe. Monet ohjausjärjestelmät ovat ajalta, jolloin tietokoneiden laskentateho oli hyvin vaatimaton nykyisiin verrattuna. Työssä esitetään tuotantoprosessi, joka sisältää teräksen leikkaussuunnitelman muodostamisongelman. Valuprosessi on yksi teräksen valmistuksen välivaiheita. Siinä sopivaan laatuun saatettu sula teräs valetaan linjastoon, jossa se jähmettyy ja leikataan aihioiksi. Myöhemmissä vaiheissa teräsaihioista muokataan pienempiä kokonaisuuksia, tehtaan lopputuotteita. Jatkuvavaletut aihiot voidaan leikata tilauskannasta riippuen monella eri tavalla. Tätä varten tarvitaan leikkaussuunnitelma, jonka muodostamiseksi on ratkaistava sekalukuoptimointiongelma. Sekalukuoptimointiongelmat ovat optimoinnin haastavin muoto. Niitä on tutkittu yksinkertaisempiin optimointiongelmiin nähden vähän. Nykyisten tietokoneiden laskentateho on kuitenkin mahdollistanut raskaampien ja monimutkaisempien optimointialgoritmien käytön ja kehittämisen. Työssä on käytetty ja esitetty eräs stokastisen optimoinnin menetelmä, differentiaalievoluutioalgoritmi. Tässä työssä esitetään teräksen leikkausoptimointialgoritmi. Kehitetty optimointimenetelmä toimii dynaamisesti tehdasympäristössä käyttäjien määrittelemien parametrien mukaisesti. Työ on osa Syncron Tech Oy:n Ovako Bar Oy Ab:lle toimittamaa ohjausjärjestelmää.
Resumo:
This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.
Resumo:
The Solar Intensity X-ray and particle Spectrometer (SIXS) on board BepiColombo's Mercury Planetary Orbiter (MPO) will study solar energetic particles moving towards Mercury and solar X-rays on the dayside of Mercury. The SIXS instrument consists of two detector sub-systems; X-ray detector SIXS-X and particle detector SIXS-P. The SIXS-P subdetector will detect solar energetic electrons and protons in a broad energy range using a particle telescope approach with five outer Si detectors around a central CsI(Tl) scintillator. The measurements made by the SIXS instrument are necessary for other instruments on board the spacecraft. SIXS data will be used to study the Solar X-ray corona, solar flares, solar energetic particles, the Hermean magnetosphere, and solar eruptions. The SIXS-P detector was calibrated by comparing experimental measurement data from the instrument with Geant4 simulation data. Calibration curves were produced for the different side detectors and the core scintillator for electrons and protons, respectively. The side detector energy response was found to be linear for both electrons and protons. The core scintillator energy response to protons was found to be non-linear. The core scintillator calibration for electrons was omitted due to insufficient experimental data. The electron and proton acceptance of the SIXS-P detector was determined with Geant4 simulations. Electron and proton energy channels are clean in the main energy range of the instrument. At higher energies, protons and electrons produce non-ideal response in the energy channels. Due to the limited bandwidth of the spacecraft's telemetry, the particle measurements made by SIXS-P have to be pre-processed in the data processing unit of the SIXS instrument. A lookup table was created for the pre-processing of data with Geant4 simulations, and the ability of the lookup table to provide spectral information from a simulated electron event was analysed. The lookup table produces clean electron and proton channels and is able to separate protons and electrons. Based on a simulated solar energetic electron event, the incident electron spectrum cannot be determined from channel particle counts with a standard analysis method.