5 resultados para Non clinical population

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hormone-dependent diseases, e.g. cancers, rank high in mortality in the modern world, and thus, there is an urgent need for new drugs to treat these diseases. Although the diseases are clearly hormone-dependent, changes in circulating hormone concentrations do not explain all the pathological processes observed in the diseased tissues. A more inclusive explanation is provided by intracrinology – a regulation of hormone concentrations at the target tissue level. This is mediated by the expression of a pattern of steroid-activating and -inactivating enzymes in steroid target tissues, thus enabling a concentration gradient between the blood circulation and the tissue. Hydroxysteroid (17beta) dehydrogenases (HSD17Bs) form a family of enzymes that catalyze the conversion between low active 17-ketosteroids and highly active 17beta-hydroxysteroids. HSD17B1 converts low active estrogen (E1) to highly active estradiol (E2) with high catalytic efficiency, and altered HSD17B1 expression has been associated with several hormone-dependent diseases, including breast cancer, endometriosis, endometrial hyperplasia and cancer, and ovarian epithelial cancer. Because of its putative role in E2 biosynthesis in ovaries and peripheral target tissues, HSD17B1 is considered to be a promising drug target for estrogen-dependent diseases. A few studies have indicated that the enzyme also has androgenic activity, but they have been ignored. In the present study, transgenic mice overexpressing human HSD17B1 (HSD17B1TG mice) were used to study the effects of the enzyme in vivo. Firstly, the substrate specificity of human HSD17B1 was determined in vivo. The results indicated that human HSD17B1 has significant androgenic activity in female mice in vivo, which resulted in increased fetal testosterone concentration and female disorder of sexual development appearing as masculinized phenotype (increased anogenital distance, lack of nipples, lack of vaginal opening, combination of vagina with urethra, enlarged Wolffian duct remnants in the mesovarium and enlarged female prostate). Fetal androgen exposure has been linked to polycystic ovary syndrome (PCOS) and metabolic syndrome during adulthood in experimental animals and humans, but the genes involved in PCOS are largely unknown. A putative mechanism to accumulate androgens during fetal life by HSD17B1 overexpression was shown in the present study. Furthermore, as a result of prenatal androgen exposure locally in the ovaries, HSD17B1TG females developed ovarian benign serous cystadenomas in adulthood. These benign lesions are precursors of low-grade ovarian serous tumors. Ovarian cancer ranks fifth in mortality of all female cancers in Finland, and most of the ovarian cancers arise from the surface epithelium. The formation of the lesions was prevented by prenatal antiandrogen treatment and by transplanting wild type (WT) ovaries prepubertally into HSD17B1TG females. The results obtained in our non-clinical TG mouse model, together with a literature analysis, suggest that HSD17B1 has a role in ovarian epithelial carcinogenesis, and especially in the development of serous tumors. The role of androgens in ovarian carcinogenesis is considered controversial, but the present study provides further evidence for the androgen hypothesis. Moreover, it directly links HSD17B1-induced prenatal androgen exposure to ovarian epithelial carcinogenesis in mice. As expected, significant estrogenic activity was also detected for human HSD17B1. HSD17B1TG mice had enhanced peripheral conversion of E1 to E2 in a variety of target tissues, including the uterus. Furthermore, this activity was significantly decreased by treatments with specific HSD17B1 inhibitors. As a result, several estrogen-dependent disorders were found in HSD17B1TG females. Here we report that HSD17B1TG mice invariably developed endometrial hyperplasia and failed to ovulate in adulthood. As in humans, endometrial hyperplasia in HSD17B1TG females was reversible upon ovulation induction, triggering a rise in circulating progesterone levels, and in response to exogenous progestins. Remarkably, treatment with a HSD17B1 inhibitor failed to restore ovulation, yet completely reversed the hyperplastic morphology of epithelial cells in the glandular compartment. We also demonstrate that HSD17B1 is expressed in normal human endometrium, hyperplasia, and cancer. Collectively, our non-clinical data and literature analysis suggest that HSD17B1 inhibition could be one of several possible approaches to decrease endometrial estrogen production in endometrial hyperplasia and cancer. HSD17B1 expression has been found in bones of humans and rats. The non-clinical data in the present study suggest that human HSD17B1 is likely to have an important role in the regulation of bone formation, strength and length during reproductive years in female mice. Bone density in HSD17B1TG females was highly increased in femurs, but in lesser amounts also in tibias. Especially the tibia growth plate, but not other regions of bone, was susceptible to respond to HSD17B1 inhibition by increasing bone length, whereas the inhibitors did not affect bone density. Therefore, HSD17B1 inhibitors could be safer than aromatase inhibitors in regard to bone in the treatment of breast cancer and endometriosis. Furthermore, diseases related to improper growth, are a promising new indication for HSD17B1 inhibitors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Verenpaineen kotimittaus − epidemiologia ja kliininen käyttö Kohonnutta verenpainetta, maailmanlaajuisesti merkittävintä ennenaikaiselle kuolemalle altistavaa riskitekijää, ei voida tunnistaa tai hoitaa ilman tarkkoja ja käytännöllisiä verenpaineen mittausmenetelmiä. Verenpaineen kotimittaus on saavuttanut suuren suosion potilaiden keskuudessa. Lääkärit eivät ole kuitenkaan vielä täysin hyväksyneet verenpaineen kotimittausta, sillä riittävä todistusaineisto sen toimivuudesta ja eduista on puuttunut. Tämän tutkimuksen tarkoituksena oli osoittaa, että kotona mitattu verenpaine (kotipaine) on perinteistä vastaanotolla mitattua verenpainetta (vastaanottopaine) tarkempi, ja että se on tehokas myös kliinisessä käytössä. Tutkimme kotipaineen käyttöä verenpainetaudin diagnosoinnissa ja hoidossa. Lisäksi tarkastelimme kotipaineen yhteyttä verenpainetaudin aiheuttamiin kohde-elinvaurioihin. Ensimmäinen aineisto, joka oli edustava otos Suomen aikuisväestöstä, koostui 2 120 45–74-vuotiaasta tutkimushenkilöstä. Tutkittavat mittasivat kotipainettaan viikon ajan ja osallistuivat terveystarkastukseen, johon sisältyi kliinisen tutkimuksen ja haastattelun lisäksi sydänfilmin otto ja vastaanottopaineen mittaus. 758 tutkittavalle suoritettiin lisäksi kaulavaltimon seinämän intima-mediakerroksen paksuuden (valtimonkovettumataudin mittari) mittaus ja 237:lle valtimon pulssiaallon nopeuden (valtimojäykkyyden mittari) mittaus. Toisessa aineistossa, joka koostui 98 verenpainetautia sairastavasta potilaasta, hoitoa ohjattiin satunnaistamisesta riippuen joko ambulatorisen eli vuorokausirekisteröinnillä mitatun verenpaineen tai kotipaineen perusteella. Vastaanottopaine oli kotipainetta merkittävästi korkeampi (systolisen/diastolisen paineen keskiarvoero oli 8/3 mmHg) ja yksimielisyys verenpainetaudin diagnoosissa kahden menetelmän välillä oli korkeintaan kohtalainen (75 %). 593 tutkittavasta, joilla oli kohonnut verenpaine vastaanotolla, 38 %:lla oli normaali verenpaine kotona eli ns. valkotakkiverenpaine. Verenpainetauti voidaan siis ylidiagnosoida joka kolmannella potilaalla seulontatilanteessa. Valkotakkiverenpaine oli yhteydessä lievästi kohonneeseen verenpaineeseen, matalaan painoindeksiin ja tupakoimattomuuteen, muttei psykiatriseen sairastavuuteen. Valkotakkiverenpaine ei kuitenkaan vaikuttaisi olevan täysin vaaraton ilmiö ja voi ennustaa tulevaa verenpainetautia, sillä siitä kärsivien sydän- ja verisuonitautien riskitekijäprofiili oli normaalipaineisten ja todellisten verenpainetautisten riskitekijäprofiilien välissä. Kotipaineella oli vastaanottopainetta vahvempi yhteys verenpainetaudin aiheuttamiin kohde-elinvaurioihin (intima-mediakerroksen paksuus, pulssiaallon nopeus ja sydänfilmistä todettu vasemman kammion suureneminen). Kotipaine oli tehokas verenpainetaudin hoidon ohjaaja, sillä kotipaineeseen ja ambulatoriseen paineeseen, jota on pidetty verenpainemittauksen ”kultaisena standardina”, perustuva lääkehoidon ohjaus johti yhtä hyvään verenpaineen hallintaan. Tämän ja aikaisempien tutkimusten tulosten pohjalta voidaan todeta, että verenpaineen kotimittaus on selkeä parannus perinteiseen vastaanotolla tapahtuvaan verenpainemittaukseen verrattuna. Verenpaineen kotimittaus on käytännöllinen, tarkka ja laajasti saatavilla oleva menetelmä, josta voi tulla jopa ensisijainen vaihtoehto verenpainetautia diagnosoitaessa ja hoitaessa. Verenpaineen mittauskäytäntöön tarvitaan muutos, sillä näyttöön perustuvan lääketieteen perusteella vaikuttaa, että vastaanotolla tapahtuvaa verenpainemittausta tulisi käyttää vain seulontatarkoitukseen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mitochondria are present in all eukaryotic cells. They enable these cells utilize oxygen in the production of adenosine triphosphate in the oxidative phosphorylation system, the mitochondrial respiratory chain. The concept ‘mitochondrial disease’ conventionally refers to disorders of the respiratory chain that lead to oxidative phosphorylation defect. Mitochondrial disease in humans can present at any age, and practically in any organ system. Mitochondrial disease can be inherited in maternal, autosomal dominant, autosomal recessive, or X-chromosomal fashion. One of the most common molecular etiologies of mitochondrial disease in population is the m.3243A>G mutation in the MT-TL1 gene, encoding mitochondrial tRNALeu(UUR). Clinical evaluation of patients with m.3243A>G has revealed various typical clinical features, such as stroke-like episodes, diabetes mellitus and sensorineural hearing loss. The prevalence and clinical characteristics of mitochondrial disease in population are not well known. This thesis consists of a series of studies, in which the prevalence and characteristics of mitochondrial disease in the adult population of Southwestern Finland were assessed. Mitochondrial haplogroup Uk was associated with increased risk of occipital ischemic stroke among young women. Large-scale mitochondrial DNA deletions and mutations of the POLG1 gene were the most common molecular etiologies of progressive external ophthalmoplegia. Around 1% of diabetes mellitus emerging between the ages 18 – 45 years was associated with the m.3243A>G mutation. Moreover, among these young diabetic patients, mitochondrial haplogroup U was associated with maternal family history of diabetes. These studies demonstrate the usefulness of carefully planned molecular epidemiological investigations in the study of mitochondrial disorders.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An aging population and increasing rates of diabetes mellitus contribute to a high prevalence of kidney dysfunction – approximately 10 percent of adults in developed countries have chronic kidney disease (CKD). CKD is a progressive loss of kidney function and this remains permanent. Early recognition of this condition is important for prevention or impeding severe adverse cardiac and renal outcomes. Cystatin C is a low molecular weight cysteine protease inhibitor that has emerged as a biomarker of kidney function. The special potential of plasma cystatin C in this setting is related to its independency of muscle mass, which is a remarkable limitation of the traditional marker creatinine. Cystatin C is a sensitive marker in diagnosing mild and moderate CKD, especially in small children, in the elderly and in conditions where muscle mass is affected. Cystatin C is quantified with immunoassays, mainly based on particle-enhanced nephelometry (PENIA) or turbidimetry (PETIA). The aim of this study was to develop a rapid and reliable assay for quantification of human cystatin C in plasma or serum by utilizing time-resolved fluorescence-based immunoassay methods. This was accomplished by utilizing different antibodies, including polyclonal and 7 monoclonal antibodies against cystatin C. Different assay designs were tested and the best assay was further modified to a dry-reagent double monoclonal assay run on an automated immunonalyzer. This assay was evaluated for clinical performance in estimating reduced kidney function and in predicting risk of adverse outcomes in patients with non-ST elevation acute coronary syndrome. Of the tested assay designs, heterogeneous non-competitive assay had the best performace and was chosen to be developed further. As an automated double monoclonal assay, this assay enabled a reliable measurement of clinically relevant cystatin C concentrations. It also showed a stronger concordance with the reference clearance method than the conventional PETIA method in patients with reduced kidney function. Risk of all-cause mortality and combined events, defined by death and myocardial infarction, increased with higher cystatin C and cystatin C remained an independent predictor of death and combined events after adjustment to nonbiochemical baseline factors. In conclusion, the developed dry-reagent double monoclonal assay allows rapid and reliable quantitative measurement of cystatin C. As measured with the developed assay, cystatin C is a potential predictor of adverse outcomes in cardiac patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is an increasing demand for individualized, genotype-based health advice. The general population-based dietary recommendations do not always motivate people to change their life-style, and partly following this, cardiovascular diseases (CVD) are a major cause of death in worldwide. Using genotype-based nutrition and health information (e.g. nutrigenetics) in health education is a relatively new approach, although genetic variation is known to cause individual differences in response to dietary factors. Response to changes in dietary fat quality varies, for example, among different APOE genotypes. Research in this field is challenging, because several non-modifiable (genetic, age, sex) and modifiable (e.g. lifestyle, dietary, physical activity) factors together and with interaction affect the risk of life-style related diseases (e.g. CVD). The other challenge is the psychological factors (e.g. anxiety, threat, stress, motivation, attitude), which also have an effect on health behavior. The genotype-based information is always a very sensitive topic, because it can also cause some negative consequences and feelings (e.g. depression, increased anxiety). The aim of this series of studies was firstly to study how individual, genotype-based health information affects an individual’s health form three aspects, and secondly whether this could be one method in the future to prevent lifestyle-related diseases, such as CVD. The first study concentrated on the psychological effects; the focus of the second study was on health behavior effects, and the third study concentrated on clinical effects. In the fourth study of this series, the focus was on all these three aspects and their associations with each other. The genetic risk and health information was the APOE gene and its effects on CVD. To study the effect of APOE genotype-based health information in prevention of CVD, a total of 151 volunteers attended the baseline assessments (T0), of which 122 healthy adults (aged 20 – 67 y) passed the inclusion criteria and started the one-year intervention. The participants (n = 122) were randomized into a control group (n = 61) and an intervention group (n = 61). There were 21 participants in the intervention Ɛ4+ group (including APOE genotypes 3/4 and 4/4) and 40 participants in the intervention Ɛ4- group (including APOE genotypes 2/3 and 3/3). The control group included 61 participants (including APOE genotypes 3/4, 4/4, 2/3, 3/3 and 2/2). The baseline (T0) and follow-up assessments (T1, T2, T3) included detailed measurements of psychological (threat and anxiety experience, stage of change), and behavioral (dietary fat quality, consumption of vegetables, - high fat/sugar foods and –alcohol, physical activity and health and taste attitudes) and clinical factors (total-, LDL- HDL cholesterol, triglycerides, blood pressure, blood glucose (0h and 2h), body mass index, waist circumference and body fat percentage). During the intervention six different communication sessions (lectures on healthy lifestyle and nutrigenomics, health messages by mail, and personal discussion with the doctor) were arranged. The intervention groups (Ɛ4+ and Ɛ4-) received their APOE genotype information and health message at the beginning of the intervention. The control group received their APOE genotype information after the intervention. For the analyses in this dissertation, the results for 106/107 participants were analyzed. In the intervention, there were 16 participants in the high-risk (Ɛ4+) group and 35 in the low-risk (Ɛ4-) group. The control group had 55 participants in studies III-IV and 56 participants in studies I-II. The intervention had both short-term (≤ 6 months) and long-term (12 months) effects on health behavior and clinical factors. The short-term effects were found in dietary fat quality and waist circumference. Dietary fat quality improved more in the Ɛ4+ group than the Ɛ4- and the control groups as the personal, genotype-based health information and waist circumference lowered more in the Ɛ4+ group compared with the control group. Both these changes differed significantly between the Ɛ4+ and control groups (p<0.05). A long-term effect was found in triglyceride values (p<0.05), which lowered more in Ɛ4+ compared with the control group during the intervention. Short-term effects were also found in the threat experience, which increased mostly in the Ɛ4+ group after the genetic feedback (p<0.05), but it decreased after 12 months, although remaining at a higher level compared to the baseline (T0). In addition, Study IV found that changes in the psychological factors (anxiety and threat experience, motivation), health and taste attitudes, and health behaviors (dietary, alcohol consumption, and physical activity) did not directly explain the changes in triglyceride values and waist circumference. However, change caused by a threat experience may have affected the change in triglycerides through total- and HDL cholesterol. In conclusion, this dissertation study has given some indications that individual, genotypebased health information could be one potential option in the future to prevent lifestyle-related diseases in public health care. The results of this study imply that personal genetic information, based on APOE, may have positive effects on dietary fat quality and some cardiovascular risk markers (e.g., improvement in triglyceride values and waist circumference). This study also suggests that psychological factors (e.g. anxiety and threat experience) may not be an obstacle for healthy people to use genotype-based health information to promote healthy lifestyles. However, even in the case of very personal health information, in order to achieve a permanent health behavior change, it is important to include attitudes and other psychological factors (e.g. motivation), as well as intensive repetition and a longer intervention duration. This research will serve as a basis for future studies and its information can be used to develop targeted interventions, including health information based on genotyping that would aim at preventing lifestyle diseases. People’s interest in personalized health advices has increased, while also the costs of genetic screening have decreased. Therefore, generally speaking, it can be assumed that genetic screening as a part of the prevention of lifestyle-related diseases may become more common in the future. In consequence, more research is required about how to make genetic screening a practical tool in public health care, and how to efficiently achieve long-term changes.