6 resultados para Natural gas.

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Uusiutuvan sähköntuotannon osuuden kasvaessa kasvaa tarve tasata sähköntuotannon ja kulutuksen vaihteluita varastoimalla sähköä. Power to Gas (PtG) - sähköenergiasta luonnonkaasua tarjoaa yhden mahdollisuuden varastoida sähköä. Sähköä käytetään veden elektrolyysiin, jossa syntynyt vety käytetään metanoinissa yhdessä hiilidioksidin kanssa muodostamaan korvaavaa luonnonkaasua. Näin syntynyttä korvaava luonnonkaasua sähköstä kutsutaan e-SNG-kaasuksi. Tässä työssä tutkitaan PtG-laitoksen investointi, käyttö- ja kunnossapitokuluja. Työssä luodaan laskentamalli, jolla lasketaan PtG-laitoksen neljälle käyttötapaukselle kannattavuuslaskelma. Käyttötapauksille lasketaan myös herkkyystarkasteluja. Kannattavuuslaskelmien perusteella päätellään PtG-laitoksen liiketoimintamahdollisuudet Suomessa. Työssä laskettujen kannattavuuslaskelmien perusteella PtG-laitoksen perustapausten liiketoimintamahdollisuudet ovat huonot. Laskettujen herkkyystarkastelujen perusteella havaittiin, että investointikulut, laitoksen ajoaika ja lisätulot hapesta ja lämmöstä ovat kannattavuuden kannalta kriittisimmät menestystekijät.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gas suppliers including Russia are facing the gas market uncertainty caused by the fast growing development of shale gas and liquefied natural gas (LNG). Given that Russia is one of the key energy suppliers in the world, Russian energy policy is intensively studied. However, the majority of the researches focus on the conventional gas sector and very few focus on the unconventional gas sector such as shale gas and LNG. In this light, this thesis aims at examining how the gas market uncertainty is framed in Russian gas export policy as well as discover how the interaction between underlying ideas and the policy frames informs policymaking. After analyzing Russian official documents, three policy frames were identified: shale gascompetition frame, LNG—cooperation frame and cooperation—competition frame. The shale gascompetition frame emphasizes the confrontation with the shale revolution in the USA. The LNG—cooperation frame rests on the idea of building cooperation with the Asia-Pacific region by the LNG trade. The cooperation—competition frame describes the oscillating Russia-EU relationship. Both the economic and ecological dimensions in the policy environment enable these three policy frames. However, the cooperation frame is constrained by the physical dimension since Russia has only one LNG facility in use. The institutional dimension underpins the idea of competition in the cooperation—competition frame. The reason is because of the divergent perspectives between Russia and the EU regarding regulations and market liberalizations. In sum, the result is different from the traditional geopolitical frame which depicts Russia as an energy superpower. Instead, this thesis suggests that Russia is shifting the priority from political interests to business interests in Russian gas export policy, particularly in the domain of shale gas and LNG.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On arvioitu, että koko maailmaa kattava energiantarve nousee 1,2 % vuosinopeudella. Asiaa ei kaunista se tosiasia, että valtaosa tänä päivänä tuotetusta energiasta (85 %) on lähtöisin fossiilisista polttoaineista. Päästöjen on arvioitu lisääntyvän 2005 – 2030 välisenä aikana noin 30 %, vaikka uusiutuvaa energiaa käytettäisiin ja prosessien hyötysuhteet paranisivat. Vuonna 2015 voimaan tuleva rikkidirektiivi on pakottanut asiantuntijat löytämään korvaavan energialähteen, joka vähentäisi päästöjen määrää, ja jota esiintyisi suurissa määrissä. Nesteytetty maakaasu, LNG, toteuttaa edellä mainitut ehdot. Tässä diplomityössä perehdytään LNG-teollisuuden arvoketjuun Suomessa sekä muualla maailmassa. Työssä pääpainona on selvittää ruostumattoman teräksen käyttömahdollisuuksia nykyisessä LNG-teollisuuden arvoketjussa sekä selvittää sen uusia sovelluskohteita LNG-alalla tulevaisuudessa. Diplomityössä on tehty laaja kirjallisuuskatsaus LNG:n arvoketjuun ja uuden EN 1.4420 ruostumattoman teräksen soveltuvuuteen kryogeenisissä lämpötiloissa. Työn aikana on myös tehty useita haastatteluja LNG-teollisuudessa toimivien henkilöiden kanssa. Menetelmäkokeita ja koehitsauksia on suoritettu näiden haastattelujen perusteella.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With growing demand for liquefied natural gas (LNG) and liquid transportation fuels, and concerns about climate change and causes of greenhouse gas emissions, this master’s thesis introduces a new value chain design for LNG and transportation fuels and respective fundamental business cases based on hybrid PV-Wind power plants. The value chains are composed of renewable electricity (RE) converted by power-to-gas (PtG), gas-to-liquids (GtL) or power-to-liquids (PtL) facilities into SNG (which is finally liquefied into LNG) or synthetic liquid fuels, mainly diesel, respectively. The RE-LNG or RE-diesel are drop-in fuels to the current energy system and can be traded everywhere in the world. The calculations for the hybrid PV-Wind power plants, electrolysis, methanation (H2tSNG), hydrogen-to-liquids (H2tL), GtL and LNG value chain are performed based on both annual full load hours (FLh) and hourly analysis. Results show that the proposed RE-LNG produced in Patagonia, as the study case, is competitive with conventional LNG in Japan for crude oil prices within a minimum price range of about 87 - 145 USD/barrel (20 – 26 USD/MBtu of LNG production cost) and the proposed RE-diesel is competitive with conventional diesel in the European Union (EU) for crude oil prices within a minimum price range of about 79 - 135 USD/barrel (0.44 – 0.75 €/l of diesel production cost), depending on the chosen specific value chain and assumptions for cost of capital, available oxygen sales and CO2 emission costs. RE-LNG or RE-diesel could become competitive with conventional fuels from an economic perspective, while removing environmental concerns. The RE-PtX value chain needs to be located at the best complementing solar and wind sites in the world combined with a de-risking strategy. This could be an opportunity for many countries to satisfy their fuel demand locally. It is also a specific business case for countries with excellent solar and wind resources to export carbon-neutral hydrocarbons, when the decrease in production cost is considerably more than the shipping cost. This is a unique opportunity to export carbon-neutral hydrocarbons around the world where the environmental limitations on conventional hydrocarbons are getting tighter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Compared to the use of traditional fossil fuels (coal, oil, natural gas), combustion of biomass and waste fuels has several environmental and economic advantages for heat and power generation. However, biomass and waste fuels might contain halogens (Cl, Br, F), alkali metals (Na, K) and heavy metals (Zn, Pb), which may cause harmful emissions and corrosion problems. Hightemperature corrosion occurs typically on furnace waterwalls and superheaters. The corrosion of the boiler tube materials limits the increase of thermal efficiency of steam boilers and leads to costly shutdowns and repairs. In recent years, some concerns have been raised about halogen (Cl, Br, and F)-related hightemperature corrosion in biomass- and waste-fired boilers. Chlorine-related high-temperature corrosion has been studied extensively. The presence of alkali chlorides in the deposits is believed to play a major role in the corrosion observed in biomass and waste fired boilers. However, there is much less information found in literature on the corrosion effect of bromine and fluorine. According to the literature, bromine is only assumed to play a role similar to chlorine; the role of fluorine is even less understood. In this work, a series of bubbling fluidized bed (BFB) bench-scale tests were carried out to characterize the formation and sulfation behaviors of KCl and KBr in BFB combustion conditions. Furthermore, a series of laboratory tests were carried out to investigate the hightemperature corrosion behaviors of three different superheater steels (10CrMo9-10, AISI 347 and Sanicro 28) exposed to potassium halides in ambient air and wet air (containing 30% H2O). The influence of H2O and O2 on the high-temperature corrosion of steels both with and without a salt (KCl) in three gas atmospheres (2% H2O-30% O2-N2, 2% H2O-2% O2-N2 and 30% H2O-2% O2-N2) was also studied. From the bench-scale BFB combustion tests, it was found that HBr has a clearly higher affinity for the available K forming KBr than HCl forming KCl. The tests also indicated that KCl has a higher tendency for sulfation than KBr. From the laboratory corrosion tests in ambient air (also called “dry air” in Paper III and Paper IV), it was found that at relatively low temperatures (≤ 550 °C) the corrosivity of KBr and KF are similar to KCl. At 600 °C, KF showed much stronger corrosivity than KBr and KCl, especially for 10CrMo9-10 and AISI 347. When exposed to KBr or KF, 10CrMo9-10 was durable at least up to 450 °C, while AISI 347 and Sanicro 28 were durable at least up to 550 °C. From the laboratory corrosion tests in wet air (30% H2O), no obvious effect of water vapor was detected at 450 °C. At 550 °C, the influence of water vapor became significant in some cases, but the trend was not consistent. At 550 °C, after exposure with KBr, 10CrMo9-10 suffered from extreme corrosion; after exposure with KF and KCl, the corrosion was less severe, but still high. At 550 °C, local deep pitting corrosion occurred on AISI 347 and Sanicro 28 after exposure with KF. Some formation of K2CrO4 was observed in the oxide layer. At 550 °C, AISI 347 and Sanicro 28 suffered from low corrosion (oxide layer thickness of < 10 μm) after exposure with KBr and KCl. No formation of K2CrO4 was observed. Internal oxidation occurred in the cases of AISI 347 with KBr and KCl. From the laboratory corrosion tests in three different gas atmospheres (2% H2O-30% O2-N2, 2% H2O-2% O2-N2 and 30% H2O-2% O2-N2), it was found that in tests with no salt, no corrosion occurred on AISI 347 and Sanicro 28 up to 600 °C in both the “O2-rich” (2% H2O-30% O2-N2) and “H2O-rich” (30% H2O-2% O2-N2) gas atmospheres; only 10CrMo9-10 showed increased corrosion with increasing temperature. For 10CrMo9-10 in the “O2-rich” atmosphere, the presence of KCl significantly increased the corrosion compared to the “no salt” cases. For 10CrMo9-10 in the “H2O-rich” atmosphere, the presence or absence of KCl did not show any big influence on corrosion. The formation of K2CrO4 was observed only in the case with the “O2-rich” atmosphere. Considering both the results from the BFB tests and the laboratory corrosion tests, if fuels containing Br were to be combusted, the corrosion damage of superheaters would be expected to be higher than if the fuels contain only Cl. Information generated from these studies can be used to help the boiler manufacturers in selecting materials for the most demanding combustion systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methanol is an important and versatile compound with various uses as a fuel and a feedstock chemical. Methanol is also a potential chemical energy carrier. Due to the fluctuating nature of renewable energy sources such as wind or solar, storage of energy is required to balance the varying supply and demand. Excess electrical energy generated at peak periods can be stored by using the energy in the production of chemical compounds. The conventional industrial production of methanol is based on the gas-phase synthesis from synthesis gas generated from fossil sources, primarily natural gas. Methanol can also be produced by hydrogenation of CO2. The production of methanol from CO2 captured from emission sources or even directly from the atmosphere would allow sustainable production based on a nearly limitless carbon source, while helping to reduce the increasing CO2 concentration in the atmosphere. Hydrogen for synthesis can be produced by electrolysis of water utilizing renewable electricity. A new liquid-phase methanol synthesis process has been proposed. In this process, a conventional methanol synthesis catalyst is mixed in suspension with a liquid alcohol solvent. The alcohol acts as a catalytic solvent by enabling a new reaction route, potentially allowing the synthesis of methanol at lower temperatures and pressures compared to conventional processes. For this thesis, the alcohol promoted liquid phase methanol synthesis process was tested at laboratory scale. Batch and semibatch reaction experiments were performed in an autoclave reactor, using a conventional Cu/ZnO catalyst and ethanol and 2-butanol as the alcoholic solvents. Experiments were performed at the pressure range of 30-60 bar and at temperatures of 160-200 °C. The productivity of methanol was found to increase with increasing pressure and temperature. In the studied process conditions a maximum volumetric productivity of 1.9 g of methanol per liter of solvent per hour was obtained, while the maximum catalyst specific productivity was found to be 40.2 g of methanol per kg of catalyst per hour. The productivity values are low compared to both industrial synthesis and to gas-phase synthesis from CO2. However, the reaction temperatures and pressures employed were lower compared to gas-phase processes. While the productivity is not high enough for large-scale industrial operation, the milder reaction conditions and simple operation could prove useful for small-scale operations. Finally, a preliminary design for an alcohol promoted, liquid-phase methanol synthesis process was created using the data obtained from the experiments. The demonstration scale process was scaled to an electrolyzer unit producing 1 Nm3 of hydrogen per hour. This Master’s thesis is closely connected to LUT REFLEX-platform.