7 resultados para Mouse Models

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Breast cancer is the most common cancer in women, and its development is intimately related to hormonal factors, but how hormones affect breast physiology and tumorigenesis is not sufficiently known. Pregnancy elicits long-term protection from breast cancer, but during the first ten years after pregnancy, breast cancer risk is increased. In previous studies, there has been conflicting data on the role of human chorionic gonadotropin (HCG) and the functionality of its receptor in extragonadal tissues. The aim of this study was to elucidate the role of chronically elevated HCG in mouse physiology. We have created a transgenic (TG) mouse model that overexpresses HCG. HCG is similar to lutenizing hormone (LH), but is secreted almost solely by the placenta during pregnancy. HCG and LH both bind to the LH receptor (LHR). In the current study, mammary gland tumors were observed in HCG TG mice. We elucidated the role of HCG in mammary gland signalling and the effects of LHR mediated signalling in mouse mammary gland gene expression. We also studied the effects of HCG in human breast epithelial cell cultures. Several endocrine disturbances were observed in HCGβ TG female mice, resulting in precocious puberty, infertility, obesity and pituitary and mammary gland tumors. The histology of the mammary gland tumors of HCGβ TG females resembled those observed in mouse models with activated Wnt/β-catenin signalling pathway. Wnts are involved in stem cell regulation and tumorigenesis, and are hormonally regulated in the mammary gland. We observed activated β-catenin signalling and elevated expression of Wnt5b and Wnt7b in TG tumors and mammary glands. Furthermore, we discovered that HCG directly regulates the expression of Wnt5b and Wnt7b in the mouse mammary gland. Pharmacological treatment with HCG also caused upregulation of several Wnt-pathway target genes in ovariectomized wild type (WT) mice in the presence of physiological concentrations of estradiol and progesterone. In addition, differential expression of several metabolic genes was observed, suggesting that HCG affects adipocyte function or glucose metabolism. When WT mice were transplanted with LHR deficient or wild type WT mammary epithelium, differential expression of several genes affecting the Wnt-signalling pathway was observed in microarray analysis. Diminished expression of several genes associated with LHR function in other tissues, such as the ovary, was observed in mammary glands deficient of epithelial LHR. In cultured human mammary epithelial cells HCG upregulated the expression of WNT5B, WNT7B similar to mouse, suggesting that the observations found are relevant in human physiology. These studies suggest that HCG/LHR signalling affects gene expression in non-gonadal tissues, and that Wnt-signalling is regulated by HCG/LH in human and mouse mammary glands.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Atherosclerosis is a life-long vascular inflammatory disease and the leading cause of death in Finland and in other western societies. The development of atherosclerotic plaques is progressive and they form when lipids begin to accumulate in the vessel wall. This accumulation triggers the migration of inflammatory cells that is a hallmark of vascular inflammation. Often, this plaque will become unstable and form vulnerable plaque which may rupture causing thrombosis and in the worst case, causing myocardial infarction or stroke. Identification of these vulnerable plaques before they rupture could save lives. At present, in the clinic, there exists no appropriated, non-invasive method for their identification. The aim of this thesis was to evaluate novel positron emission tomography (PET) probes for the detection of vulnerable atherosclerotic plaques and to characterize, two mouse models of atherosclerosis. These studies were performed by using ex vivo and in vivo imaging modalities. The vulnerability of atherosclerotic plaques was evaluated as expression of active inflammatory cells, namely macrophages. Age and the duration of high-fat diet had a drastic impact on the development of atherosclerotic plaques in mice. In imaging of atherosclerosis, 6-month-old mice, kept on high-fat diet for 4 months, showed matured, metabolically active, atherosclerotic plaques. [18F]FDG and 68Ga were accumulated in the areas representative of vulnerable plaques. However, the slow clearance of 68Ga limits its use for the plaque imaging. The novel synthesized [68Ga]DOTA-RGD and [18F]EF5 tracers demonstrated efficient uptake in plaques as compared to the healthy vessel wall, but the pharmacokinetic properties of these tracers were not optimal in used models. In conclusion, these studies resulted in the identification of new strategies for the assessment of plaque stability and mouse models of atherosclerosis which could be used for plaque imaging. In the used probe panel, [18F]FDG was the best tracer for plaque imaging. However, further studies are warranted to clarify the applicability of [18F]EF5 and [68Ga]DOTA-RGD for imaging of atherosclerosis with other experimental models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mammalian spermatozoa gain their fertilizing ability during maturation in the epididymis. Proteins and lipids secreted into the epididymal lumen remodel the sperm membrane, thereby providing the structure necessary for progressive motility and oocyte interaction. In the current study, genetically modified mouse models were utilized to determine the role of novel genes and regulatory systems in the postnatal development and function of the epididymis. Ablation of the mouse β-defensin, Defb41, altered the flagellar movements of sperm and reduced the ability of sperm to bind to the oocyte in vitro. The Defb41-deficient iCre knock-in mouse model was furthermore utilized to generate Dicer1 conditional knock-out (cKO) mice. DICER1 is required for production of mature microRNAs in the regulation of gene expression by RNA interference. Dicer1 cKO gave rise to dedifferentiation of the epididymal epithelium and an altered expression of genes involved in lipid synthesis. As a consequence, the cholesterol:polyunsaturated fatty acid ratio of the Dicer1 cKO sperm membrane was increased, which resulted in membrane instability and infertility. In conclusion, the results of the Defb41 study further support the important role of β-defensin family members in sperm maturation. The regulatory role of Dicer1 was also shown to be required for epididymal development. In addition, the study is the first to show a clear connection between lipid homeostasis in the epididymis and sperm membrane integrity. Taken together, the results give important new evidence on the regulatory system guiding epididymal development and function

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In mammals, post-testicular sperm maturation taking place in the epididymis is required for the spermatozoa to acquire the abilities required to fertilize the egg in vivo. The epididymal epithelial cells secrete proteins and other small molecules into the lumen, where they interact with the spermatozoa and enable necessary maturational changes. In this study different in silico, in vitro and in vivo approaches were utilized in order to find novel genes responsible for the function of the epididymis and post-testicular sperm maturation in the mouse. Available online genomic databases were analyzed to identify genes potentially expressed in the epididymis, gene expression profiling was performed by studying their expression in different mouse tissues, and significance of certain genes to fertility was assessed by generating genetically modified mouse models. A recently discovered Pate (prostate and testis expression) gene family was found to be predominantly expressed in the epididymis. It represents one of the largest known gene families expressed in the epididymis, and the members code for proteins potentially involved in defense against microorganisms. Through genetically modified mouse models CRISP4 (cysteine-rich secretory protein 4) was identified to regulate sperm acrosome reaction, and BMYC to inhibit the expression of the Myc proto-oncogene in the developing testis. A mouse line expressing iCre recombinase specifically in the epididymis was also generated. This model can be used to generate conditional, epididymis-specific knock-out models, and will be a valuable tool in fertility studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is the most common form of dementia. Characteristic changes in an AD brain are the formation of β-amyloid protein (Aβ) plaques and neurofibrillary tangles, though other alterations in the brain have also been connected to AD. No cure is available for AD and it is one of the leading causes of death among the elderly in developed countries. Liposomes are biocompatible and biodegradable spherical phospholipid bilayer vesicles that can enclose various compounds. Several functional groups can be attached on the surface of liposomes in order to achieve long-circulating target-specific liposomes. Liposomes can be utilized as drug carriers and vehicles for imaging agents. Positron emission tomography (PET) is a non-invasive imaging method to study biological processes in living organisms. In this study using nucleophilic 18F-labeling synthesis, various synthesis approaches and leaving groups for novel PET imaging tracers have been developed to target AD pathology in the brain. The tracers were the thioflavin derivative [18F]flutemetamol, curcumin derivative [18F]treg-curcumin, and functionalized [18F]nanoliposomes, which all target Aβ in the AD brain. These tracers were evaluated using transgenic AD mouse models. In addition, 18F-labeling synthesis was developed for a tracer targeting the S1P3 receptor. The chosen 18F-fluorination strategy had an effect on the radiochemical yield and specific activity of the tracers. [18F]Treg-curcumin and functionalized [18F]nanoliposomes had low uptake in AD mouse brain, whereas [18F]flutemetamol exhibited the appropriate properties for preclinical Aβ-imaging. All of these tracers can be utilized in studies of the pathology and treatment of AD and related diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studying testis is complex, because the tissue has a very heterogeneous cell composition and its structure changes dynamically during development. In reproductive field, the cell composition is traditionally studied by morphometric methods such as immunohistochemistry and immunofluorescence. These techniques provide accurate quantitative information about cell composition, cell-cell association and localization of the cells of interest. However, the sample preparation, processing, staining and data analysis are laborious and may take several working days. Flow cytometry protocols coupled with DNA stains have played an important role in providing quantitative information of testicular cells populations ex vivo and in vitro studies. Nevertheless, the addition of specific cells markers such as intracellular antibodies would allow the more specific identification of cells of crucial interest during spermatogenesis. For this study, adult rat Sprague-Dawley rats were used for optimization of the flow cytometry protocol. Specific steps within the protocol were optimized to obtain a singlecell suspension representative of the cell composition of the starting material. Fixation and permeabilization procedure were optimized to be compatible with DNA stains and fluorescent intracellular antibodies. Optimization was achieved by quantitative analysis of specific parameters such as recovery of meiotic cells, amount of debris and comparison of the proportions of the various cell populations with already published data. As a result, a new and fast flow cytometry method coupled with DNA stain and intracellular antigen detection was developed. This new technique is suitable for analysis of population behavior and specific cells during postnatal testis development and spermatogenesis in rodents. This rapid protocol recapitulated the known vimentin and γH2AX protein expression patterns during rodent testis ontogenesis. Moreover, the assay was applicable for phenotype characterization of SCRbKO and E2F1KO mouse models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prostate cancer (PCa) is the most common non-cutaneous malignant disease among males in the developed countries. Radical prostatectomy (RP) is an effective therapy for most PCa patients with localized or locally invaded tumors but in some cases the cancer recurs after RP. PCa is a heterogeneous disease, which is regulated by many factors, such as androgen receptor (AR), estrogen receptors and  (ER and ER), fibroblast growth factors (FGFs) and their receptors (FGFRs). In this study, the role of ERβ, FGF8, FGF13 and FGFRL1 was investigated in PCa. Previous studies have suggested that ER is protective against PCa whereas FGF8 has been shown to induce PCa in transgenic mice. FGF13 and FGFRL1 are poorly understood members of the FGF and FGFR families, respectively. Transgenic mouse models were used to investigate the ability of inactivated ERβ to facilitate FGF8-induced prostate tumorigenesis. Human PCa tissue microarrays (TMAs) were used to study the expression pattern of FGF13 and FGFRL1 in PCa and the results were correlated to corresponding patient data. The targets and biological functions of FGF13 and FGFRL1 were characterized using experimental in vivo and in vitro models. The results show that deficiency of ERβ, which had been expected to have tumor suppressing capacity, seemed to influence epithelial differentiation but did not affect FGF8-induced prostate tumorigenesis. Analysis of the TMAs showed increased expression of FGF13 in PCa. The level of cytoplasmic FGF13 was associated with the PCa biochemical recurrence (BCR), demonstrated by increasing serum PSA value, and was able to act as an independent prognostic biomarker for PCa patients after RP. Expression of FGFRL1, the most recently identified FGFR, was also elevated in PCa. Cytoplasmic and nuclear FGFRL1 was associated with high Gleason score and Ki67 level whereas the opposite was true for the cell membrane FGFRL1. Silencing of FGFRL1 in PC-3M cells led to a strongly decreased growth rate of these cells as xenografts in nude mice and the experiments with PCa cell lines showed that FGFRL1 is able to modulate the FGF2- and FGF8-induced signaling pathways. The next generation sequencing (NGS) experiments with FGFRL1-silenced PC-3M cells revealed candidates for FGFRL1 target genes. In summary, these studies provide new data on the FGF/FGFR signaling pathways in normal and malignant prostate and suggest a potential role for FGF13 and FGFRL1 as novel prognostic markers for PCa patients. Keywords: FGF8, FGF13, FGFRL1, ERβ, prostate cancer, prognostic marker