20 resultados para Migration of systems
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This thesis examines coordination of systems development process in a contemporary software producing organization. The thesis consists of a series of empirical studies in which the actions, conceptions and artifacts of practitioners are analyzed using a theory-building case study research approach. The three phases of the thesis provide empirical observations on different aspects of systemsdevelopment. In the first phase is examined the role of architecture in coordination and cost estimation in multi-site environment. The second phase involves two studies on the evolving requirement understanding process and how to measure this process. The third phase summarizes the first two phases and concentrates on the role of methods and how practitioners work with them. All the phases provide evidence that current systems development method approaches are too naïve in looking at the complexity of the real world. In practice, development is influenced by opportunity and other contingent factors. The systems development processis not coordinated using phases and tasks defined in methods providing universal mechanism for managing this process like most of the method approaches assume.Instead, the studies suggest that managing systems development process happens through coordinating development activities using methods as tools. These studies contribute to the systems development methods by emphasizing the support of communication and collaboration between systems development participants. Methods should not describe the development activities and phases in a detail level, butshould include the higher level guidance for practitioners on how to act in different systems development environments.
Resumo:
The design methods and languages targeted to modern System-on-Chip designs are facing tremendous pressure of the ever-increasing complexity, power, and speed requirements. To estimate any of these three metrics, there is a trade-off between accuracy and abstraction level of detail in which a system under design is analyzed. The more detailed the description, the more accurate the simulation will be, but, on the other hand, the more time consuming it will be. Moreover, a designer wants to make decisions as early as possible in the design flow to avoid costly design backtracking. To answer the challenges posed upon System-on-chip designs, this thesis introduces a formal, power aware framework, its development methods, and methods to constraint and analyze power consumption of the system under design. This thesis discusses on power analysis of synchronous and asynchronous systems not forgetting the communication aspects of these systems. The presented framework is built upon the Timed Action System formalism, which offer an environment to analyze and constraint the functional and temporal behavior of the system at high abstraction level. Furthermore, due to the complexity of System-on-Chip designs, the possibility to abstract unnecessary implementation details at higher abstraction levels is an essential part of the introduced design framework. With the encapsulation and abstraction techniques incorporated with the procedure based communication allows a designer to use the presented power aware framework in modeling these large scale systems. The introduced techniques also enable one to subdivide the development of communication and computation into own tasks. This property is taken into account in the power analysis part as well. Furthermore, the presented framework is developed in a way that it can be used throughout the design project. In other words, a designer is able to model and analyze systems from an abstract specification down to an implementable specification.
Resumo:
The objective of the work has been to study why systems thinking should be used in combination with TQM, what are the main benefits of the integration and how it could best be done. The work analyzes the development of systems thinking and TQM with time and the main differences between them. The work defines prerequisites for adopting a systems approach and the organizational factors which embody the development of an efficient learning organization. The work proposes a model based on combination of an interactive management model and redesign to be used for application of systems approach with TQM in practice. The results of the work indicate that there are clear differences between systems thinking and TQM which justify their combination. Systems approach provides an additional complementary perspective to quality management. TQM is focused on optimizing operations at the operational level while interactive management and redesign of organization are focused on optimization operations at the conceptual level providing a holistic system for value generation. The empirical study demonstrates the applicability of the proposed model in one case study company but its application is tenable and possible also beyond this particular company. System dynamic modeling and other systems based techniques like cognitive mapping are useful methods for increasing understanding and learning about the behavior of systems. The empirical study emphasizes the importance of using a proper early warning system.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.
Resumo:
This dissertation describes a networking approach to infinite-dimensional systems theory, where there is a minimal distinction between inputs and outputs. We introduce and study two closely related classes of systems, namely the state/signal systems and the port-Hamiltonian systems, and describe how they relate to each other. Some basic theory for these two classes of systems and the interconnections of such systems is provided. The main emphasis lies on passive and conservative systems, and the theoretical concepts are illustrated using the example of a lossless transfer line. Much remains to be done in this field and we point to some directions for future studies as well.
Resumo:
Systems biology is a new, emerging and rapidly developing, multidisciplinary research field that aims to study biochemical and biological systems from a holistic perspective, with the goal of providing a comprehensive, system- level understanding of cellular behaviour. In this way, it addresses one of the greatest challenges faced by contemporary biology, which is to compre- hend the function of complex biological systems. Systems biology combines various methods that originate from scientific disciplines such as molecu- lar biology, chemistry, engineering sciences, mathematics, computer science and systems theory. Systems biology, unlike “traditional” biology, focuses on high-level concepts such as: network, component, robustness, efficiency, control, regulation, hierarchical design, synchronization, concurrency, and many others. The very terminology of systems biology is “foreign” to “tra- ditional” biology, marks its drastic shift in the research paradigm and it indicates close linkage of systems biology to computer science. One of the basic tools utilized in systems biology is the mathematical modelling of life processes tightly linked to experimental practice. The stud- ies contained in this thesis revolve around a number of challenges commonly encountered in the computational modelling in systems biology. The re- search comprises of the development and application of a broad range of methods originating in the fields of computer science and mathematics for construction and analysis of computational models in systems biology. In particular, the performed research is setup in the context of two biolog- ical phenomena chosen as modelling case studies: 1) the eukaryotic heat shock response and 2) the in vitro self-assembly of intermediate filaments, one of the main constituents of the cytoskeleton. The range of presented approaches spans from heuristic, through numerical and statistical to ana- lytical methods applied in the effort to formally describe and analyse the two biological processes. We notice however, that although applied to cer- tain case studies, the presented methods are not limited to them and can be utilized in the analysis of other biological mechanisms as well as com- plex systems in general. The full range of developed and applied modelling techniques as well as model analysis methodologies constitutes a rich mod- elling framework. Moreover, the presentation of the developed methods, their application to the two case studies and the discussions concerning their potentials and limitations point to the difficulties and challenges one encounters in computational modelling of biological systems. The problems of model identifiability, model comparison, model refinement, model inte- gration and extension, choice of the proper modelling framework and level of abstraction, or the choice of the proper scope of the model run through this thesis.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Tässä tutkimuksessa tutkittiin tietämyksen hallintaa, tietopääomaa ja niiden ilmentymiä liiketoiminnassa. Tutkimuksen avulla pyrittiin selvittämään, pystytäänkö tutkimukseen valittujen mallien avulla määrittelemään S-ryhmään kuuluvan ABC-liikennemyymäläketjun liiketoiminnan kannalta oleellinen tietämyksen hallinta ja tietopääoma. Tutkimus toteutettiin case-tutkimuksena puolistrukturoiduilla teemahaastatteluilla. Haastatteluja tehtiin yhteensä 13 kappaletta. Analyysi, tulokset ja johtopäätökset perustuivat tutkimuksen tekijän omiin tulkintoihin, jotka perustuivat haastatteluista saatujen havaintojen vertailusta teoriaan ja muihin sivutietolähteisiin. Tutkimus osoitti, että tietämyksen hallinnan ja tietopääoman määrittely kyettiin tekemään, mutta lopputulos ei ollut lähtökohtamallin mukainen. Itse määrittelyprosessi ei ollut helppo toteuttaa, mikä johtui tietämyksen hallinnan ja tietopääoman eri osa-alueiden laajuudesta, päällekkäisyydestä, käsitteiden ja aihepiirin vieraudesta haastateltaville. Tutkimuksen oleellisin tulos oli se, että lähtökohtamalliin tehtiin muutoksia tietopääoman osa-alueelle: 1. aineettomaan varallisuuteen lisättiin ”organisaatio” ja poistettiin ”tekniset järjestelmät”, 2. organisaation osaamiseen lisättiin ”verkosto-osaaminen” ja 3. organisaation uudistumiskykyyn lisättiin ”operatiivinen kyvykkyys”. Keskeisin johtopäätös oli, että määritelläkseen liiketoiminnalle ominaisen tietämyksen hallinnan ja tietopääoman ilmentymät, tulee organisaation lähteä liikkeelle yhdestä mallista ja sopia yhteisistä käytettävistä käsitteistä. Organisaatiot ovat eri toimialoilta, joten kaikkia ilmentymiä ei välttämättä esiinny tai löytyy mallissa esiintymättömiä ilmentymiä. Tällöin tulee tehdä muutoksia lähtökohtakohtamalliin.
Resumo:
Lyme borreliosis is a tick-transmitted infection caused by the spirochete bacterium Borrelia burgdorferi sensu lato. The tick injects bacteria into host skin, where a first line defence, mainly the complement system, neutrophils, dendritic cells and macrophages are ready to attack foreign intruders. However, in the case of Lyme borreliosis, the original immune response in the skin is untypically mild among bacterial infections. A further untypical feature is the ability of B. burgdorferi to disseminate to distant organs, where, in some patients, symptoms appear after years after the original infection. This study aimed at uncovering some of the immune evasion mechanisms utilized by B. burgdorferi against the complement system, neutrophils and dendritic cells. B. burgdorferi was shown to inhibit chemotaxis of human neutrophils towards nformyl- methyl-leucyl-phenylalanine (fMLP). Outer surface protein B (OspB) of B. burgdorferi was shown to promote resistance to the attack of the complement system and neutrophil phagocytosis at low complement concentrations. B. burgdorferi was shown to inhibit migration of dendritic cells in vitro towards CCL19 and CCL21 and also in an in vivo model. This effect was shown to be due to the absence of CD38 on the borrelia-stimulated dendritic cell surface. A defect in p38 mitogen-activated-protein-kinase (p38) signaling was linked to defective CD38 expression. A defect in CD38 expression on B. burgdorferi-stimulated neutrophils was also observed. In this study, a number of novel immune evasion strategies utilized by B burgdorferi were chracterized. However, further studies are needed as other immune evasion mechanisms await to be uncovered.
Resumo:
The control of coating layer properties is becoming increasingly important as a result of an emerging demand for novel coated paper-based products and an increasing popularity of new coating application methods. The governing mechanisms of microstructure formation dynamics during consolidation and drying are nevertheless, still poorly understood. Some of the difficulties encountered by experimental methods can be overcome by the utilisation of numerical modelling and simulation-based studies of the consolidation process. The objective of this study was to improve the fundamental understanding of pigment coating consolidation and structure formation mechanisms taking place on the microscopic level. Furthermore, it is aimed to relate the impact of process and suspension properties to the microstructure of the coating layer. A mathematical model based on a modified Stokesian dynamics particle simulation technique was developed and applied in several studies of consolidation-related phenomena. The model includes particle-particle and particle-boundary hydrodynamics, colloidal interactions, Born repulsion, and a steric repulsion model. The Brownian motion and a free surface model were incorporated to enable the specific investigation of consolidation and drying. Filter cake stability was simulated in various particle systems, and subjected to a range of base substrate absorption rates and system temperatures. The stability of the filter cake was primarily affected by the absorption rate and size of particles. Temperature was also shown to have an influence. The consolidation of polydisperse systems, with varying wet coating thicknesses, was studied using imposed pilot trial and model-based drying conditions. The results show that drying methods have a clear influence on the microstructure development, on small particle distributions in the coating layer and also on the mobility of particles during consolidation. It is concluded that colloidal properties can significantly impact coating layer shrinkage as well as the internal solids concentration profile. Visualisations of particle system development in time and comparison of systems at different conditions are useful in illustrating coating layer structure formation mechanisms. The results aid in understanding the underlying mechanisms of pigment coating layer consolidation. Guidance is given regarding the relationship between coating process conditions and internal coating slurry properties and their effects on the microstructure of the coating.
Resumo:
The dissertation seeks to explore how to improve users‘ adoption of mobile learning in current education systems. Considering the difference between basic and tertiary education in China, the research consists of two separate but interrelated parts, which focus on the use of mobile learning in basic and tertiary education contexts, respectively. In the dissertation, two adoption frameworks are developed based on previous studies. The frameworks are then evaluated using different technologies. Concerning mobile learning use in basic education settings, case study methodology is utilized. A leading provider of mobile learning services and products in China, Noah Ltd., is investigated. Multiple sources of evidence are collected to test the framework. Regarding mobile learning adoption in tertiary education contexts, survey research methodology is utilized. Based on 209 useful responses, the framework is evaluated using structural equation modelling technology. Four proposed determinants of intention to use are evaluated, which are perceived ease of use, perceived near-term usefulness, perceived ong-term usefulness and personal innovativeness. The dissertation provides a number of new insights for both researchers and practitioners. In particular, the dissertation specifies a practical solution to deal with the disruptive effects of mobile learning in basic education, which keeps the use of mobile learning away from the schools across such as European countries. A list of new and innovative mobile learning technologies is systematically introduced as well. Further, the research identifies several key factors driving mobile learning adoption in tertiary education settings. In theory, the dissertation suggests that since the technology acceptance model is initiated in work-oriented innovations by testing employees, it is not necessarily the best model for studying educational innovations. The results also suggest that perceived longterm usefulness for educational systems should be as important as perceived usefulness for utilitarian systems, and perceived enjoyment for hedonic systems. A classification based on the nature of systems purpose (utilitarian, hedonic or educational) would contribute to a better understanding of the essence of IT innovation adoption.