34 resultados para Maritime Ports
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The Gulf of Finland is said to be one of the densest operated sea areas in the world. It is a shallow and economically vulnerable sea area with dense passenger and cargo traffic of which petroleum transports have a share of over 50 %. The winter conditions add to the risks of maritime traffic in the Gulf of Finland. It is widely believed that the growth of maritime transportation will continue also in the future. The Gulf of Finland is surrounded by three very different national economies with, different maritime transportation structures. Finland is a country of high GDP/per capita with a diversified economic structure. The number of ports is large and the maritime transportation consists of many types of cargoes: raw materials, industrial products, consumer goods, coal and petroleum products, and the Russian transit traffic of e.g. new cars and consumer goods. Russia is a large country with huge growth potential; in recent years, the expansion of petroleum exports has lead to a strong economic growth, which is also apparent in the growth of maritime transports. Russia has been expanding its port activities in the Gulf of Finland and it is officially aiming to transport its own imports and exports through the Russian ports in the future; now they are being transported to great extend through the Finnish, Estonian and other Baltic ports. Russia has five ports in the Gulf of Finland. Estonia has also experienced fast economic growth, but the growth has been slowing down already during the past couples of years. The size of its economy is small compared to Russia, which means the transported tonnes cannot be very massive. However, relatively large amounts of the Russian petroleum exports have been transported through the Estonian ports. The future of the Russian transit traffic in Estonia looks nevertheless uncertain and it remains to be seen how it will develop and if Estonia is able to find replacing cargoes if the Russian transit traffic will come to an end in the Estonian ports. Estonia’s own import and export consists of forestry products, metals or other raw materials and consumer goods. Estonia has many ports on the shores of the Gulf of Finland, but the port of Tallinn dominates the cargo volumes. In 2007, 263 M tonnes of cargoes were transported in the maritime traffic in the Gulf of Finland, of which the share of petroleum products was 56 %. 23 % of the cargoes were loaded or unloaded in the Finnish ports, 60 % in the Russian ports and 17 % in the Estonian ports. The largest ports were Primorsk (74.2 M tonnes) St. Petersburg (59.5 M tonnes), Tallinn (35.9 M tonnes), Sköldvik (19.8 M tonnes), Vysotsk (16.5 M tonnes) and Helsinki (13.4 M) tonnes. Approximately 53 600 ship calls were made in the ports of the Gulf of Finland. The densest traffic was found in the ports of St. Petersburg (14 651 ship calls), Helsinki (11 727 ship calls) and Tallinn (10 614 ship calls) in 2007. The transportation scenarios are usually based on the assumption that the amount of transports follows the development of the economy, although also other factors influence the development of transportation, e.g. government policy, environmental aspects, and social and behavioural trends. The relationship between the development of transportation and the economy is usually analyzed in terms of the development of GDP and trade. When the GDP grows to a certain level, especially the international transports increase because countries of high GDP produce, consume and thus transport more. An effective transportation system is also a precondition for the economic development. In this study, the following factors were taken into consideration when formulating the future scenarios: maritime transportation in the Gulf of Finland 2007, economic development, development of key industries, development of infrastructure and environmental aspects in relation to maritime transportation. The basic starting points for the three alternative scenarios were: • the slow growth scenario: economic recession • the average growth scenario: economy will recover quickly from current instability • the strong growth scenario: the most optimistic views on development will realize According to the slow growth scenario, the total tonnes for the maritime transportation in the Gulf of Finland would be 322.4 M tonnes in 2015, which would mean a growth of 23 % compared to 2007. In the average growth scenario, the total tonnes were estimated to be 431.6 M tonnes – a growth of 64 %, and in the strong growth scenario 507.2 M tonnes – a growth of 93%. These tonnes were further divided into petroleum products and other cargoes by country, into export, import and domestic traffic by country, and between the ports. For petroleum products, the share of crude oil and oil products was estimated and the number of tanker calls in 2015 was calculated for each scenario. However, the future development of maritime transportation in the GoF is dependent on so many societal and economic variables that it is not realistic to predict one exact point estimate value for the cargo tonnes for a certain scenario. Plenty of uncertainty is related both to the degree in which the scenario will come true as well as to the cause-effect relations between the different variables. For these reasons, probability distributions for each scenario were formulated by an expert group. As a result, a range for the total tonnes of each scenario was formulated and they are as follows: the slow growth scenario: 280.8 – 363 M tonnes (expectation value 322.4 M tonnes)
Resumo:
Russia has been one of the fastest developing economic areas in the world. Based on the GDP, the Russian economy grew evenly since the crisis in 1998 up till 2008. The growth in the gross domestic product has annually been some 5–10%. In 2007, the growth reached 8.1%, which is the highest figure after the 10% growth in 2000. Due to the growth of the economy and wage levels, purchasing power and consumption have been strongly increasing. The growing consumption has especially increased the imports of durables, such as passenger cars, domestic appliances and electronics. The Russian ports and infrastructure have not been able to satisfy the growing needs of exports and imports, which is why quite a large share of Russian foreign trade is going through third countries as transit transports. Finnish ports play a major role in transit transports to and from Russia. About 15% of the total value of Russian imports was transported through Finland in 2008. The economic recession that started in autumn 2008 and continues to date has had an impact on the economic development of Russia. The export income has decreased, mainly due to the reduced world market prices of energy products (oil and gas) and raw minerals. Investments have been postponed, getting credit is more difficult than before, and the ruble has weakened in relation to the euro and the dollar. The imports are decreasing remarkably, and are not forecast to reach the 2008 volumes even in 2012. The economic crisis is reflected in Finland's transit traffic. The volume of goods transported through Finland to and from Russia has decreased almost in the same proportion as the imports of goods to Russia. The biggest risk threatening the development of the Russian economy over long term is its dependence on export income from oil, gas, metals, minerals and forest products, as well as the trends of the world market prices of these products. Nevertheless, it is expected that the GDP of Russia will start to grow again in the forthcoming years due to the increased demand for energy products and raw minerals in the world. At the same time, it is obvious that the world market prices of these products will go up with the increasing demand. The increased income from exports will lead to a growth of imports, especially those of consumer goods, as the living standard of Russian citizens rises. The forecasts produced by the Russian Government concerning the economic development of Russia up till 2030 also indicate a shift in exported goods from raw materials to processed products, which together with energy products will become the main export goods of Russia. As a consequence, Russia may need export routes through third countries, which can be seen as an opportunity for increased transit transports through the ports of Finland. The ports competing with the ports of Finland for Russian foreign trade traffic are the Russian Baltic Sea ports and the ports of the Baltic countries. The strongest competitors are the Baltic Sea ports handling containers. On the Russian Baltic Sea, these ports include Saint Petersburg, Kaliningrad and, in the near future, the ports of Ust-Luga and possibly Vyborg. There are plans to develop Ust-Luga and Vyborg as modern container ports, which would become serious competitors to the Finnish ports. Russia is aiming to redirect as large a share as possible of foreign trade traffic to its own ports. The ports of Russia and the infrastructure associated with them are under constant development. On the other hand, the logistic capacity of Russia is not able to satisfy the continually growing needs of the Russian foreign trade. The capacity problem is emphasized by a structural incompatibility between the exports and imports in the Russian foreign trade. Russian exports can only use a small part of the containers brought in with imports. Problems are also caused by the difficult ice conditions and narrow waterways leading to the ports. It is predicted that Finland will maintain its position as a transit route for the Russian foreign trade, at least in the near future. The Russian foreign trade is increasing, and Russia will not be able to develop its ports in proportion with the increasing foreign trade. With the development of port capacity, cargo flows through the ports of Russia will grow. Structural changes in transit traffic are already visible. Firms are more and more relocating their production to Russia, for example as regards the assembly of cars and warehousing services. Simultaneously, an increasing part of transit cargoes are sent directly to Russia without unloading and reloading in Finland. New product groups have nevertheless been transported through Finland (textile products and tools), replacing the lost cargos. The global recession that started in autumn 2008 has influenced the volume of Russian imports and, consequently, the transit volumes of Finland, but the recession is not expected to be of long duration, and will thus only have a short-term impact on transit volumes. The Finnish infrastructure and services offered by the logistic chain should also be ready to react to the changes in imported product groups as well as to the change in Russian export products in the future. If the development plans of the Russian economy are realized, export products will be more refined, and the share of energy and raw material products will decrease. The other notable factor to be taken into consideration is the extremely fast-changing business environment in Russia. Operators in the logistic chain should be flexible enough to adapt to all kinds of changes to capitalise on business opportunities offered by the Russian foreign trade for the companies and for the transit volumes of Finnish ports, also in the future.
Resumo:
Marine traffic is expected to increase rapidly in the future, both in the Baltic Sea and in the Gulf of Finland. As the number of vessels in the area increases, so does the risk of serious marine accidents. To help prevent such accidents in the future, the International Maritime Organization (IMO) has put forth the International Safety Management Code (the ISM Code), which aims to improve the safety of the vessels. The second work package of the Development of maritime safety culture (METKU) project investigates the effects of the ISM Code and potential areas of improvement in maritime safety. The first phase in the work package used a literature review to determine how maritime safety culture could be improved. Continuous improvement, management commitment and personnel empowerment and motivation were found to be essential. In the second phase, shipping companies and administrators were interviewed. It was discovered that especially incident reporting based on continuous improvement was felt to be lacking. This third phase aims to take a closer look at incident reporting and suggest improvements based on the findings. Both the IMO and national legislation encourage shipping companies in incident reporting, and on the national level a shared incident reporting system (ForeSea) is being pushed forward. The objective of this research project was to find out the IMO’s attitude towards incident reporting, to establish a theoretical framework of reference in incident reporting, and to observe how reporting is actually being employed on the seas. Existing incident reporting systems were also researched. The study was carried out using a literature review and the results previously gathered in interviews. The results of phase two were elaborated further for themes relating to incident reporting. According to the findings of this research, the theoretical background of incident reporting dates back to the early 20th century. Although some theories are widely accepted, some have also received criticism. The lack of a concise, shared terminology poses major difficulties in maritime incident reporting and in determining its efficiency. A central finding is the fact that existing incident reporting focuses mostly on information flow away from the ship, whereas the backward information flow is much less planned and monitored. In incident reporting, both nationally and internationally, stakeholders are plenty. The information produced by these parties is scattered, however, and thus not very usable. Based on this research, the centralizing of this information should be made a priority. Traditionally, the success of incident reporting has been determined statistically, from the number of reported incidents. Yet existing reporting systems have not been designed with such statistical analysis in mind, so different methodologies might yield a more comprehensive view. The previous findings of seafarers and management (including shipping companies and administration) having differing views on safety work and safety management were backed up by the results of this study. Seafarers find seamanship and storytelling important, while management wants a more systematic and broad approach on safety matters. The research project was carried out by the Centre for Maritime Studies of the University of Turku, in the Kotka unit (Maritime Logistics Research), with coordination by the Kotka Maritime Research Centre. The major financiers of the project were the European Union and the city of Kotka. The financing authority was the Regional Council of Päijät-Häme. Partners in the project were the shipping companies Finnlines Oyj, Kristina Cruises Oy, Meriaura Oy and VG-Shipping Oy, and the ports of Helsinki, Kotka and Hamina. The partners provided both funding for the project and information for the research.
Resumo:
Maritime transports are very essential for Finland as over 80% of the foreign trade in the country is seaborne and possibilities to carry out these transports by are limited. Any disruption in maritime transports has negative consequences to many sectors in the Finnish economy. Maritime transport thus represents critical infrastructure for Finland. This report focuses on the importance of maritime transports on security of supply in Finland and for the so called critical industries in particular. The report summarizes the results of the Work Package 2 of the research project STOCA – “Study of cargo flows in the Gulf of Finland in emergency situations”. The aim of the research was to analyze the cargo flows and infrastructure that are vital for maintaining security of supply in Finland, as well as the consequences of disruptions in the maritime traffic for the Finnish critical industries and for the Finnish society. In the report we give a presentation of the infrastructure and transport routes which are critical for maintaining security of supply in Finland. We discuss import dependency of the critical industries, and the importance of the Gulf of Finland ports for Finland. We assess vulnerabilities associated with the critical material flows of the critical industries, and possibilities for alternative routings in case either one or several of the ports in Finland would be closed. As a concrete example of a transport disruption we analyze the consequences of the Finnish stevedore strike at public ports (4.3.–19.3.2010). The strike stopped approximately 80% of the Finnish foreign trade. As a result of the strike Finnish companies could not export their products and/or import raw materials, components and spare parts, or other essential supplies. We carried out personal interviews with representatives of the companies in Finnish critical industries to find out about the problems caused by the strike, how companies carried out they transports and how they managed to continue their operations during the strike. Discussions with the representatives of the companies gave us very practical insights about companies’ preparedness towards transport disruptions in general. Companies in the modern world are very vulnerable to transport disruptions because companies regardless of industries have tried to improve their performance by optimizing their resources and e.g. by reducing their inventory levels. At the same time they have become more and more dependent on continuous transports. Most companies involved in foreign trade have global operations and global supply chains, so any disruption anywhere in the world can have an impact on the operations of the company causing considerable financial loss. The volcanic eruption in Iceland in April 2010 stopping air traffic in the whole Northern Europe and most recently the earth quake causing a tsunami in Japan in March 2011 are examples of severe disruptions causing considerable negative impacts to companies’ supply chains. Even though the Finnish stevedore strike was a minor disruption compared to the natural catastrophes mentioned above, it showed the companies’ vulnerability to transport disruptions very concretely. The Finnish stevedore strike gave a concrete learning experience of the importance of preventive planning for all Finnish companies: it made them re-think their practical preparedness towards transport risks and how they can continue with their daily operations despite the problems. Many companies realized they need to adapt their long-term countermeasures against transport disruptions. During the strike companies did various actions to secure their supply chains. The companies raised their inventory levels before the strike began, they re-scheduled or postponed their deliveries, shifted customer orders between production plants among their company’s production network or in the extreme case bought finished products from their competitor to fulfil their customers’ order. Our results also show that possibilities to prepare against transport disruptions differ between industries. The Finnish society as a whole is very dependent on imports of energy, various raw materials and other supplies needed by the different industries. For many of the Finnish companies in the export industries and e.g. in energy production maritime transport is the only transport mode the companies can use due to large volumes of materials transported or due to other characteristics of the goods. Therefore maritime transport cannot be replaced by any other transport mode. In addition, a significant amount of transports are concentrated in certain ports. From a security of supply perspective attention should be paid to finding ways to decrease import dependency and ensuring that companies in the critical industries can ensure the continuity of their operations.
Resumo:
Maritime transport moves around 6 billion tonnes of freight every year. The freight consists of liquid bulks (45%), dry bulks (23%) and general cargo (32%). Freight traffic and transports chains vary according to region, commodity and the origin and the destination of freight. In the European Union the ports sector handles over 90% of the trade with third countries. The share of intra-EU trade is approximately 30% of the total transportation and the number of passengers is over 200 million every year. The Baltic Sea has more than 50,000 vessels a year pass the Skaw at the northernmost tip of Denmark on their way into or out of the Baltic. Roughly 60% to 70% of these vessels are cargo vessels and 17% to 25% tankers. Ports and maritime transport play a crucial role in global commerce today. Today’s business environment is changing rapidly, and the constant changes create challenges for the transport industry and maritime traffic. Ports have to adapt to continuous changes in economic structures, logistics demands, and people’s travel and leisure patterns. In order to ensure the competitiveness of sea connections, the ports need to fully enhance multilateral cross-border understanding and cooperation. In this report the focus is on liner traffic between five ports in the Central Baltic Region: Stockholm, Tallinn, Helsinki Turku and Naantali. The report defines the drivers of the demand for cargo and passenger traffic and highlights the most important factors. The economic situation and foreign trade of each county are elaborated on with detailed information about the flows of traffic between the five ports. Based on expert interviews, the main characteristics of each port, including strengths and weaknesses, are presented. The report is based on primary and secondary data. Primary data was received through interviews and mail surveys. Secondary data was attained through a literature research, statistics, data given by the PENTA ports and webpages. The report is divided into two main parts: the drivers creating the demand for transport and the results of current cargo and passenger flows between PENTA ports.
Resumo:
Maritime transport is the foundation for trade in the Baltic Sea area. It represents over 15% of the world’s cargo traffic and it is predicted to increase by over 100% in the future. There are currently over 2,000 ships sailing on the Baltic Sea and both the number and the size of ships have been growing in recent years. Due to the importance of maritime traffic in the Baltic Sea Region, ports have to be ready to face future challenges and adapt to the changing operational environment. The companies within the transportation industry – in this context ports, shipowners and logistics companies – compete continuously and although the number of companies in the business is not particularly substantial because the products offered are very similar, other motives for managing the supply chain arise. The factors creating competitive advantage are often financial and related to cost efficiency, but geographical location, road infrastructure in the hinterland and vessel connections are among the most important factors. The PENTA project focuses on adding openness, transparency and sharing knowledge and information, so that the challenges of the future can be better addressed with regard to cooperation. This report presents three scenario-based traffic forecasts for routes between the PENTA ports in 2020. The chosen methodology is PESTE, in which the focus in on economic factors affecting future traffic flows. The report further analyses the findings and results of the first PENTA WP2 report “Drivers of demand in cargo and passenger traffic between PENTA ports” and utilises the same material, which was obtained through interviews and mail surveys.
Resumo:
The ports of Stockholm, Tallinn, Helsinki, Naantali and Turku play key roles in making the Central Baltic region accessible. Effective, competitive, eco-friendly and safe port procedures and solutions for the transportation of goods are of major importance for trade in the Baltic Sea region. This report presents the most essential results and recommendations of the PENTA project, which focused on how ports could better comprehend and face current and future challenges facing carriage of goods by sea. Each of the four work packages (WPs) of the PENTA project analysed the changes from a different perspective. WP2 focused on traffic flows between the PENTA ports. Its main emphasis was on the ports, shipowners, and logistics companies that are the key parties in freight transport and on the changes affecting the economy of those ports. In WP3 noise as an environmental challenge for ports was investigated and the analysis also shed light on the relationship between the port and the city. In WP4 procedures related to safety, security and administrative procedures were researched. The main emphasis was on identifying the requirements for the harmonisation of those procedures. Collaboration is highlighted throughout this report. In order to prepare for the future, it was found that ports need to respond to growing competition, increasing costs and shifts in customer demand by strengthening their existing partnerships with other actors in the maritime cluster. Cargo and passenger transport are the main sources of income for most ports. Cargo traffic between the PENTA ports is expected to grow steadily in the future and the outlook for passenger traffic is positive. However, to prepare for the future, ports should not only secure the core activities which generate revenue but also seek alternative ways to make profit. In order to gain more transit traffic, it is suggested that ports conduct a more thorough study of the future requirements for doing business with Russia. The investigation of noise at ports revealed two specific dilemmas that ports cannot solve alone. Firstly, the noise made by vessels and, secondly, the relationship between the port and the surrounding city. Vessels are the most important single noise source in the PENTA ports and also one of the hardest noise sources to handle. Nevertheless, port authorities in Finland and Sweden are held responsible for all noise in the port area, including noise produced by vessels, which is noise the port authority can only influence indirectly. Building housing by waterfront areas close to ports may also initiate disagreements because inhabitants may want quiet areas, whereas port activities always produce some noise from their traffic. The qualitative aspects of the noise question, cooperating with the stakeholders and the communicating of issues related to noise are just as important. We propose that ports should follow the logic of continuous improvement in their noise management. The administrative barriers discussed in this report are mainly caused by differences in international and national legislation, variations in the customs procedures of each country, the incompatibility of the IT systems used in maritime transport, noncompliance with regulations regarding dangerous goods, and difficulties in applying Schengen regulations to vessels from non-EU countries. Improving the situation is out of the hands of the ports to do alone and requires joint action on a variety of levels, including the EU, national authorities and across administrative borders.
Resumo:
Työssä käsitellään Itämeren rahtiliikennettä ja sen kehitykseen vaikuttavia tekijöitä. Työn ajankohtaisuutta on lisännyt Euroopan unionin laajentuminen toukokuussa 2004, jolloin Viro, Latvia, Liettua ja Puola liittyivät kaikki EU:hun. Työn teoriaosuus painottuu tulevaisuudentutkimukseen ja erityisesti skenaariotutkimukseen. Työssä on esitetty kahdenlaisia skenaarioita. Toisissa käsitellä Suomesta ja Ruotsista Baltian maihin suuntautuvaa rahtiliikennettä. Skenaariot on ulottuvat aina vuoteen 2011 asti. Toiset skenaariot puolestaan käsittelevät Suomen ja Puolan välisen rahtiliikenteen tulevaisuutta. Baltian skenaarioissa korostuu Venäjän suuri rooli. Venäjälle suuntautuva transitoliikenne on kaikille Baltian maille hyvin tärkeää. Sen määrän kehitys kuitenkin riippuu hyvin paljon Venäjän omien satamien sekä Venäjän talouden kehityksestä. Venäjän taloudellinen kehitys säätelee myös hyvin paljon ympäristön kehitystä. Baltian liikenteen kehittymistä säätelee myös vahvasti koko Itä-Euroopan sekä Valko-Venäjän ja Ukrainan liikenteen kehitys. Euroopan unionin jäsenyys tuo omat lisänsä kehityksen suunnille erilaisten tukien ja kehitysprojektien mukana. Puolan skenaarioissa korostuu Puolan maantieteellisen sijainnin merkitys keskellä Eurooppaa. Paineet Saksan ruuhkaongelmien purkamisen ja itäisen Euroopan nopean talouskasvun myötä keskittyvät Puolan liikenteeseen. Puolan maaliikenneinfrastruktuuri vaatii suuria kehitysprojekteja, joita rahoittamaan tarvitaan etenkin Euroopan Unionia. Puolan valtion suuri asukaspotentiaali tekee siitä myös erityisen kiinnostavan sijoituskohteen ulkomaisille investoijille. Myös tämä osaltaan lisää Puolan liikennettä. Sekä Puolassa, että Baltiassa eletään vahvan kasvun aikaa. Tämä tekee molemmista mielenkiintoisen vaihtoehdon liikennöintikohteeksi.
Resumo:
The purpose of the METKU Project (Development of Maritime Safety Culture) is to study how the ISM Code has influenced the safety culture in the maritime industry. This literature review is written as a part of the Work Package 2 which is conducted by the University of Turku, Centre for Maritime Studies. The maritime traffic is rapidly growing in the Baltic Sea which leads to a growing risk of maritime accidents. Particularly in the Gulf of Finland, the high volume of traffic causes a high risk of maritime accidents. The growing risks give us good reasons for implementing the research project concerning maritime safety and the effectiveness of the safety measures, such as the safety management systems. In order to reduce maritime safety risks, the safety management systems should be further developed. The METKU Project has been launched to examine the improvements which can be done to the safety management systems. Human errors are considered as the most important reason for maritime accidents. The international safety management code (the ISM Code) has been established to cut down the occurrence of human errors by creating a safety-oriented organizational culture for the maritime industry. The ISM Code requires that a company should provide safe practices in ship operation and a safe working environment and establish safeguards against all identified risk. The fundamental idea of the ISM Code is that companies should continuously improve safety. The commitment of the top management is essential for implementing a safety-oriented culture in a company. The ISM Code has brought a significant contribution to the progress of maritime safety in recent years. Shipping companies and ships’ crews are more environmentally friendly and more safety-oriented than 12 years ago. This has been showed by several studies which have been analysed for this literature research. Nevertheless, the direct effect and influence of the ISM Code on maritime safety could not be isolated very well. No quantitative measurement (statistics/hard data) could be found in order to present the impacts of the ISM Code on maritime safety. In this study it has been discovered that safety culture has emerged and it is developing in the maritime industry. Even though the roots of the safety culture have been established there are still serious barriers to the breakthrough of the safety management. These barriers could be envisaged as cultural factors preventing the safety process. Even though the ISM Code has been effective over a decade, the old-established behaviour which is based on the old day’s maritime culture still occurs. In the next phase of this research project, these cultural factors shall be analysed in regard to the present safety culture of the maritime industry in Finland.
Resumo:
During the last few years, the discussion on the marginal social costs of transportation has been active. Applying the externalities as a tool to control transport would fulfil the polluter pays principle and simultaneously create a fair control method between the transport modes. This report presents the results of two calculation algorithms developed to estimate the marginal social costs based on the externalities of air pollution. The first algorithm calculates the future scenarios of sea transport traffic externalities until 2015 in the Gulf of Finland. The second algorithm calculates the externalities of Russian passenger car transit traffic via Finland by taking into account both sea and road transport. The algorithm estimates the ship-originated emissions of carbon dioxide (CO2), nitrogen oxides (NOx), sulphur oxides (SOx), particulates (PM) and the externalities for each year from 2007 to 2015. The total NOx emissions in the Gulf of Finland from the six ship types were almost 75.7 kilotons (Table 5.2) in 2007. The ship types are: passenger (including cruisers and ROPAX vessels), tanker, general cargo, Ro-Ro, container and bulk vessels. Due to the increase of traffic, the estimation for NOx emissions for 2015 is 112 kilotons. The NOx emission estimation for the whole Baltic Sea shipping is 370 kilotons in 2006 (Stipa & al, 2007). The total marginal social costs due to ship-originated CO2, NOx, SOx and PM emissions in the GOF were calculated to almost 175 million Euros in 2007. The costs will increase to nearly 214 million Euros in 2015 due to the traffic growth. The major part of the externalities is due to CO2 emissions. If we neglect the CO2 emissions by extracting the CO2 externalities from the results, we get the total externalities of 57 million Euros in 2007. After eight years (2015), the externalities would be 28 % lower, 41 million Euros (Table 8.1). This is the result of the sulphur emissions reducing regulation of marine fuels. The majority of the new car transit goes through Finland to Russia due to the lack of port capacity in Russia. The amount of cars was 339 620 vehicles (Statistics of Finnish Customs 2008) in 2005. The externalities are calculated for the transportation of passenger vehicles as follows: by ship to a Finnish port and, after that, by trucks to the Russian border checkpoint. The externalities are between 2 – 3 million Euros (year 2000 cost level) for each route. The ports included in the calculations are Hamina, Hanko, Kotka and Turku. With the Euro-3 standard trucks, the port of Hanko would be the best choice to transport the vehicles. This is because of lower emissions by new trucks and the saved transport distance of a ship. If the trucks are more polluting Euro 1 level trucks, the port of Kotka would be the best choice. This indicates that the truck emissions have a considerable effect on the externalities and that the transportation of light cargo, such as passenger cars by ship, produces considerably high emission externalities. The emission externalities approach offers a new insight for valuing the multiple traffic modes. However, the calculation of the marginal social costs based on the air emission externalities should not be regarded as a ready-made calculation system. The system is clearly in the need of some improvement but it can already be considered as a potential tool for political decision making.
Resumo:
”METKU –projektissa” (Merenkulun turvallisuuskulttuurin kehittäminen) tutkitaan kansainvälisen turvallisuusjohtamiskoodin (ISM-koodin) vaikutuksia merenkulun turvallisuuteen ja etsitään kehittämiskohteita merenkulun turvallisuusjohtamisen parantamiseksi. Tämä haastatteluraportti on laadittu METKU –projektin yhteistyössä työpakettien 1 ja 2 kesken. Tähän raporttiin haastateltiin yhteensä 94 merenkulun ammattilaista. Suurimman osan haastateltavista muodostivat aktiiviset merenkulkijat: miehistön jäsenet, päällystö ja alusten päälliköt. Haastattelukohteena oli seitsemän suomalaista varustamoa. Haastatteluissa kerättiin merenkulkijoiden kokemuksia ja mielipiteitä ISM-koodin vaikutuksesta heidän käytännön työhönsä. Suomalaiset merenkulkijat uskovat, että tänä päivänä varustamoiden johtajat ovat hyvin sitoutuneita turvallisuuteen. Myös miehistön asenteet turvallisuuteen ovat ISM-koodin käytön myötä parantuneet. Haasteltavien yhteinen huoli kohdistui jatkuvan parantamisen toimivuuteen. Kaikki haastatellut ryhmät olivat samaa mieltä siitä, että poikkeamien raportointi ei ISMkoodin vaatimuksesta huolimatta toimi kunnolla. ISM-koodin käyttöön otosta on ollut merenkululle selkeää hyötyä. Haastateltavat esittivät hyötyinä parantuneen yhteistyön ja tiedonkulun alusten ja varustamon välillä sekä sen, että merenkulun toiminnan laatu on parantunut. Monet haastateltavat korostivat, että ISM-koodin selkeät turvallisuusvastuut yhtiölle on ollut merkittävä hyöty. Itse ISM-koodiin merenkulkijoilla ei ollut juurikaan huomauttamista. Sen sijaan turvallisuusjohtamisen käytännön toteutuksessa nähtiin parantamisen varaa. ISMkoodin aiheuttamina ongelmina mainittiin mm. lisääntynyt byrokratia ja liian monimutkaiset ja yksityiskohtaiset turvallisuuskäsikirjat. Monet haastateltavat toivovat, että ISM-koodin käytännön soveltamiseen laadittaisiin ohjeita.
Resumo:
Suomenlahden lisääntynyt meriliikenne on herättänyt huolta meriliikenteen turvallisuuden tasosta, ja erityisesti Venäjän öljyviennin kasvu on lisännyt öljyonnettomuuden todennäköisyyttä Suomenlahdella. Erilaiset kansainväliset, alueelliset ja kansalliset ohjauskeinot pyrkivät vähentämään merionnettomuuden riskiä ja meriliikenteen muita haittavaikutuksia. Tämä raportti käsittelee meriturvallisuuden yhteiskunnallisia ohjauskeinoja: ohjauskeinoja yleisellä tasolla, meriturvallisuuden keskeisimpiä säätelijöitä, meriturvallisuuden ohjauskeinoja ja meriturvallisuuspolitiikan tulevaisuuden näkymiä, ohjauskeinojen tehokkuutta ja nykyisen meriturvallisuuden ohjausjärjestelmän heikkouksia. Raportti on kirjallisuuskatsaus meriturvallisuuden yhteiskunnalliseen sääntelyn rakenteeseen ja tilaan erityisesti Suomenlahden meriliikenteen näkökulmasta. Raportti on osa tutkimusprojektia ”SAFGOF - Suomenlahden meriliikenteen kasvunäkymät 2007 - 2015 ja kasvun vaikutukset ympäristölle ja kuljetusketjujen toimintaan” ja sen työpakettia 6 ”Keskeisimmät riskit ja yhteiskunnalliset vaikutuskeinot”. Yhteiskunnalliset ohjauskeinot voidaan ryhmitellä hallinnollisiin, taloudellisiin ja tietoohjaukseen perustuviin ohjauskeinoihin. Meriturvallisuuden edistämisessä käytetään kaikkia näitä, mutta hallinnolliset ohjauskeinot ovat tärkeimmässä asemassa. Merenkulun kansainvälisen luonteen vuoksi meriturvallisuuden sääntely tapahtuu pääosin kansainvälisellä tasolla YK:n ja erityisesti Kansainvälisen merenkulkujärjestön (IMO) toimesta. Lisäksi myös Euroopan Unionilla on omaa meriturvallisuuteen liittyvää sääntelyä ja on myös olemassa muita alueellisia meriturvallisuuden edistämiseen liittyviä elimiä kuten HELCOM. Joitakin meriturvallisuuden osa-alueita säädellään myös kansallisella tasolla. Hallinnolliset meriturvallisuuden ohjauskeinot sisältävät aluksen rakenteisiin ja varustukseen, alusten kunnon valvontaan, merimiehiin ja merityön tekemiseen sekä navigointiin liittyviä ohjauskeinoja. Taloudellisiin ohjauskeinoihin kuuluvat esimerkiksi väylä- ja satamamaksut, merivakuutukset, P&I klubit, vastuullisuus- ja korvauskysymykset sekä taloudelliset kannustimet. Taloudellisten ohjauskeinojen käyttö meriturvallisuuden edistämiseen on melko vähäistä verrattuna hallinnollisten ohjauskeinojen käyttöön, mutta niitä voitaisiin varmasti käyttää enemmänkin. Ongelmana taloudellisten ohjauskeinojen käytössä on se, että ne kuuluvat pitkälti kansallisen sääntelyn piiriin, joten alueellisten tai kansainvälisten intressien edistäminen taloudellisilla ohjauskeinoilla voi olla hankalaa. Tieto-ohjaus perustuu toimijoiden vapaaehtoisuuteen ja yleisen tiedotuksen lisäksi tieto-ohjaukseen sisältyy esimerkiksi vapaaehtoinen koulutus, sertifiointi tai meriturvallisuuden edistämiseen tähtäävät palkinnot. Poliittisella tasolla meriliikenteen aiheuttamat turvallisuusriskit Suomenlahdella on otettu vakavasti ja paljon työtä tehdään eri tahoilla riskien minimoimiseksi. Uutta sääntelyä on odotettavissa etenkin liittyen meriliikenteen ympäristövaikutuksiin ja meriliikenteen ohjaukseen kuten meriliikenteen sähköisiin seurantajärjestelmiin. Myös inhimilliseen tekijän merkitykseen meriturvallisuuden kehittämisessä on kiinnitetty lisääntyvissä määrin huomiota, mutta inhimilliseen tekijän osalta tehokkaiden ohjauskeinojen kehittäminen näyttää olevan haasteellista. Yleisimmin lääkkeeksi esitetään koulutuksen kehittämistä. Kirjallisuudessa esitettyjen kriteereiden mukaan tehokkaiden ohjauskeinojen tulisi täyttää seuraavat vaatimukset: 1) tarkoituksenmukaisuus – ohjauskeinojen täytyy olla sopivia asetetun tavoitteen saavuttamiseen, 2) taloudellinen tehokkuus – ohjauskeinon hyödyt vs. kustannukset tulisi olla tasapainossa, 3) hyväksyttävyys – ohjauskeinon täytyy olla hyväksyttävä asianosaisten ja myös laajemman yhteiskunnan näkökulmasta katsottuna, 4) toimeenpano – ohjauskeinon toimeenpanon pitää olla mahdollista ja sen noudattamista täytyy pystyä valvomaan, 5) lateraaliset vaikutukset – hyvällä ohjauskeinolla on positiivisia seurannaisvaikutuksia muutoinkin kuin vain ohjauskeinon ensisijaisten tavoitteiden saavuttaminen, 6) kannustin ja uuden luominen – hyvä ohjauskeino kannustaa kokeilemaan uusia ratkaisuja ja kehittämään toimintaa. Meriturvallisuutta koskevaa sääntelyä on paljon ja yleisesti ottaen merionnettomuuksien lukumäärä on ollut laskeva viime vuosikymmenien aikana. Suuri osa sääntelystä on ollut tehokasta ja parantanut turvallisuuden tasoa maailman merillä. Silti merionnettomuuksia ja muita vaarallisia tapahtumia sattuu edelleen. Nykyistä sääntelyjärjestelmää voidaan kritisoida monen asian suhteen. Kansainvälisen sääntelyn aikaansaaminen ei ole helppoa: prosessi on yleensä hidas ja tuloksena voi olla kompromissien kompromissi. Kansainvälinen sääntely on yleensä reaktiivista eli ongelmakohtiin puututaan vasta kun jokin onnettomuus tapahtuu sen sijaan että se olisi proaktiivista ja pyrkisi puuttumaan ongelmakohtiin jo ennen kuin jotain tapahtuu. IMO:n työskentely perustuu kansallisvaltioiden osallistumiseen ja sääntelyn toimeenpano tapahtuu lippuvaltioiden toimesta. Kansallisvaltiot ajavat IMO:ssa pääasiallisesti omia intressejään ja sääntelyn toimeenpanossa on suuria eroja lippuvaltioiden välillä. IMO:n kyvyttömyys puuttua havaittuihin ongelmiin nopeasti ja ottaa sääntelyssä huomioon paikallisia olosuhteita on johtanut siihen, että esimerkiksi Euroopan Unioni on alkanut itse säädellä meriturvallisuutta ja että on olemassa sellaisia alueellisia erityisjärjestelyjä kuin PSSA (particularly sensitive sea area – erityisen herkkä merialue). Merenkulkualalla toimii monenlaisia yrityksiä: toisaalta yrityksiä, jotka pyrkivät toimimaan turvallisesti ja kehittämään turvallisuutta vielä korkeammalle tasolle, ja toisaalta yrityksiä, jotka toimivat niin halvalla kuin mahdollista, eivät välitä turvallisuusseikoista, ja joilla usein on monimutkaiset ja epämääräiset omistusolosuhteet ja joita vahingon sattuessa on vaikea saada vastuuseen. Ongelma on, että kansainvälisellä merenkulkualalla kaikkien yritysten on toimittava samoilla markkinoilla. Vastuuttomien yritysten toiminnan mahdollistavat laivaajat ja muut alan toimijat, jotka suostuvat tekemään yhteistyötä niiden kanssa. Välinpitämätön suhtautuminen turvallisuuteen johtuu osaksi myös merenkulun vanhoillisesta turvallisuuskulttuurista. Verrattaessa meriturvallisuuden sääntelyjärjestelmää kokonaisuutena tehokkaiden ohjauskeinoihin kriteereihin, voidaan todeta, että monien kriteerien osalta nykyistä järjestelmää voidaan pitää tehokkaana ja onnistuneena. Suurimmat ongelmat lienevät sääntelyn toimeenpanossa ja ohjauskeinojen kustannustehokkuudessa. Lippuvaltioiden toimeenpanoon perustuva järjestelmä ei toimi toivotulla tavalla, josta mukavuuslippujen olemassa olo on selvin merkki. Ohjauskeinojen, sekä yksittäisten ohjauskeinojen että vertailtaessa eri ohjauskeinoja keskenään, kustannustehokkuutta on usein vaikea arvioida, minkä seurauksena ohjauskeinojen kustannustehokkuudesta ei ole saatavissa luotettavaa tietoa ja tuloksena voi olla, että ohjauskeino on käytännössä pienen riskin eliminoimista korkealla kustannuksella. Kansainvälisen tason meriturvallisuus- (ja merenkulku-) politiikan menettelytavoiksi on ehdotettu myös muita vaihtoehtoja kuin nykyinen järjestelmä, esimerkiksi monitasoista tai polysentristä hallintojärjestelmää. Monitasoisella hallintojärjestelmällä tarkoitetaan järjestelmää, jossa keskushallinto on hajautettu sekä vertikaalisesti alueellisille tasoille että horisontaalisesti ei-valtiollisille toimijoille. Polysentrinen hallintojärjestelmä menee vielä askeleen pidemmälle. Polysentrinen hallintojärjestelmä on hallintotapa, jonka puitteissa kaikentyyppiset toimijat, sekä yksityiset että julkiset, voivat osallistua hallintoon, siis esimerkiksi hallitukset, edunvalvontajärjestöt, kaupalliset yritykset jne. Kansainvälinen lainsäädäntö määrittelee yleiset tasot, mutta konkreettiset toimenpiteet voidaan päättää paikallisella tasolla eri toimijoiden välisessä yhteistyössä. Tämän tyyppisissä hallintojärjestelmissä merenkulkualan todellinen, kansainvälinen mutta toisaalta paikallinen, toimintaympäristö tulisi otetuksi paremmin huomioon kuin järjestelmässä, joka perustuu kansallisvaltioiden keskenään yhteistyössä tekemään sääntelyyn. Tällainen muutos meriturvallisuuden hallinnassa vaatisi kuitenkin suurta periaatteellista suunnanmuutosta, jollaisen toteutumista ei voi pitää kovin todennäköisenä ainakaan lyhyellä tähtäimellä.
Resumo:
The twin-city model has found to increase economical activity and well-being. The similar economical, social and cultural background of Finland and Estonia as well as the EU integration give good preconditions to create a twin-city of Helsinki and Tallinn. The relatively long distance between Helsinki and Tallinn is challenging. Therefore, good transport infrastructure and functioning connections are required to form a twin-city of Helsinki and Tallinn. The connections between these cities can be considered also in broader perspective than only from the viewpoint of the twin-city concept. New markets areas have been emerged in Europe due to collapse of planned economy and integration of Europe. Also the transport routes to the markets are changing. The Hel-sinki-Tallinn sea route can be considered as a fast route to the new markets in the Cen-tral and Eastern Europe. The Helsinki-Tallinn sea route is also a potential route to the Western European markets. This study provides an analysis of transport and cargo flows between Finland and Esto-nia for regional and local planners. The main purpose of the study is to clarify the pre-sent situation of the seaborne cargo flows on the Helsinki-Tallinn route and how the cargo flows will develop in the future. The study focuses on the following thematic enti-ties: the Finnish and Estonian seaborne transport system and cargo flows, the structure and volume of the cargo flows on the Helsinki-Tallinn route, the hinterland cargo flows on the Helsinki-Tallinn route and the transport methods used on the Helsinki-Tallinn route. The study was carried out as a desk research, a statistical analysis and an inter-view study during the spring–autumn 2011. The study reveals that during the period 2002–2010 the volume of the seaborne cargo traffic between Finland and Estonia has increased significantly while the trend of the trade volume between Finland and Estonia has remained nearly constant. This indicates that the route via Estonia is increasingly used in the Finnish foreign trade. Because the ports of Helsinki and Tallinn are the main ports in the cargo traffic between Finland and Estonia, the role of the Helsinki-Tallinn route as a sea leg in the hinterland connections of Finland has increased. The growth of the cargo volume on the Helsinki-Tallinn route was estimated to continue on the annual level of 10 % during the next couple of years. In the long run the growth of the cargo volumes depends on the economical and indus-trial development of the former Eastern European countries. If the IMO’s sulphur regu-lations will come in force, the Helsinki-Tallinn route will become one of the main routes also to the Western European markets, besides of the route via Sweden. The study also shows that the fast and reliable connections year round on the Helsinki-Tallinn route have made it possible for service and logistics companies to reconsider their logistics strategies in a new way in the both side of the Gulf of Finland. Anyway, the ropax concept is seen as the only economical profitable solution on the Helsinki-Tallinn route because cargo and passenger traffic are supporting each other. The trucks (vehicle combinations) will remain the main mode of transport on the Helsinki-Tallinn route because general cargo is the main commodity on the route. IMO’s sulphur regula-tions and the changes in the structure of the Finnish industry may create prerequisites for rail road transport in the hinterland connections of Finland. The twin-city model has found to increase economical activity and well-being. The similar economical, social and cultural background of Finland and Estonia as well as the EU integration give good preconditions to create a twin-city of Helsinki and Tallinn. The relatively long distance between Helsinki and Tallinn is challenging. Therefore, good transport infrastructure and functioning connections are required to form a twin-city of Helsinki and Tallinn. The connections between these cities can be considered also in broader perspective than only from the viewpoint of the twin-city concept. New markets areas have been emerged in Europe due to collapse of planned economy and integration of Europe. Also the transport routes to the markets are changing. The Hel-sinki-Tallinn sea route can be considered as a fast route to the new markets in the Cen-tral and Eastern Europe. The Helsinki-Tallinn sea route is also a potential route to the Western European markets. This study provides an analysis of transport and cargo flows between Finland and Esto-nia for regional and local planners. The main purpose of the study is to clarify the pre-sent situation of the seaborne cargo flows on the Helsinki-Tallinn route and how the cargo flows will develop in the future. The study focuses on the following thematic enti-ties: the Finnish and Estonian seaborne transport system and cargo flows, the structure and volume of the cargo flows on the Helsinki-Tallinn route, the hinterland cargo flows on the Helsinki-Tallinn route and the transport methods used on the Helsinki-Tallinn route. The study was carried out as a desk research, a statistical analysis and an inter-view study during the spring–autumn 2011. The study reveals that during the period 2002–2010 the volume of the seaborne cargo traffic between Finland and Estonia has increased significantly while the trend of the trade volume between Finland and Estonia has remained nearly constant. This indicates that the route via Estonia is increasingly used in the Finnish foreign trade. Because the ports of Helsinki and Tallinn are the main ports in the cargo traffic between Finland and Estonia, the role of the Helsinki-Tallinn route as a sea leg in the hinterland connections of Finland has increased. The growth of the cargo volume on the Helsinki-Tallinn route was estimated to continue on the annual level of 10 % during the next couple of years. In the long run the growth of the cargo volumes depends on the economical and indus-trial development of the former Eastern European countries. If the IMO’s sulphur regu-lations will come in force, the Helsinki-Tallinn route will become one of the main routes also to the Western European markets, besides of the route via Sweden. The study also shows that the fast and reliable connections year round on the Helsinki-Tallinn route have made it possible for service and logistics companies to reconsider their logistics strategies in a new way in the both side of the Gulf of Finland. Anyway, the ropax concept is seen as the only economical profitable solution on the Helsinki-Tallinn route because cargo and passenger traffic are supporting each other. The trucks (vehicle combinations) will remain the main mode of transport on the Helsinki-Tallinn route because general cargo is the main commodity on the route. IMO’s sulphur regula-tions and the changes in the structure of the Finnish industry may create prerequisites for rail road transport in the hinterland connections of Finland.