38 resultados para Library of carboxylic acids

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carboxylic acids are commonly used organic acids and have many applications in industries producing food and pharmaceutical products, surfactants and detergents. Especially formic, acetic, propionic and butyric acid are important organic chemicals. These compounds can be found in many side streams and plant effluents. Recovery costs of carboxylic acids are high when they are removed from dilute solution. Conventional processes for the recovery of carboxylic acids from aqueous solutions are classical distillation or extractive distillation, azeotropic distillation or liquid-liquid extraction. The literature part of this Master’s of Science Thesis comprises possible extractants in liquid-liquid extraction of carboxylic acids from aqueous solutions and methods for their regeneration form the extract. The experimental part of this Thesis investigates liquid-liquid extraction of carboxylic acids from aqueous solutions. The aim of this work was to find a suitable extractant for liquid-liquid extraction and suitable process conditions to recover carboxylic acids from aqueous solutions. Also, back extraction of carboxylic acids and their thermal decomposition in relation to distillation of were. Experiments showed that there is more than one possible extractant for liquid-liquid extraction of carboxylic acids. Results also showed that it is possible to separate carboxylic acids and regenerate all the used extractants by vacuum distillation at suitable temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Separation of carboxylic acids from aqueous streams is an important part of their manufacturing process. The aqueous solutions are usually dilute containing less than 10 % acids. Separation by distillation is difficult as the boiling points of acids are only marginally higher than that of water. Because of this distillation is not only difficult but also expensive due to the evaporation of large amounts of water. Carboxylic acids have traditionally been precipitated as calcium salts. The yields of these processes are usually relatively low and the chemical costs high. Especially the decomposition of calcium salts with sulfuric acid produces large amounts of calcium sulfate sludge. Solvent extraction has been studied as an alternative method for recovery of carboxylic acids. Solvent extraction is based on mixing of two immiscible liquids and the transfer of the wanted components form one liquid to another due to equilibrium difference. In the case of carboxylic acids, the acids are transferred from aqueous phase to organic solvent due to physical and chemical interactions. The acids and the extractant form complexes which are soluble in the organic phase. The extraction efficiency is affected by many factors, for instance initial acid concentration, type and concentration of the extractant, pH, temperature and extraction time. In this paper, the effects of initial acid concentration, type of extractant and temperature on extraction efficiency were studied. As carboxylic acids are usually the products of the processes, they are wanted to be recovered. Hence the acids have to be removed from the organic phase after the extraction. The removal of acids from the organic phase also regenerates the extractant which can be then recycled in the process. The regeneration of the extractant was studied by back-extracting i.e. stripping the acids form the organic solution into diluent sodium hydroxide solution. In the solvent regeneration, the regenerability of different extractants and the effect of initial acid concentration and temperature were studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of the behaviour of cellulose, hemicelluloses, and lignin during wood and pulp processing is essential for understanding and controlling the processes. Determination of monosaccharide composition gives information about the structural polysaccharide composition of wood material and helps when determining the quality of fibrous products. In addition, monitoring of the acidic degradation products gives information of the extent of degradation of lignin and polysaccharides. This work describes two capillary electrophoretic methods developed for the analysis of monosaccharides and for the determination of aliphatic carboxylic acids from alkaline oxidation solutions of lignin and wood. Capillary electrophoresis (CE), in its many variants is an alternative separation technique to chromatographic methods. In capillary zone electrophoresis (CZE) the fused silica capillary is filled with an electrolyte solution. An applied voltage generates a field across the capillary. The movement of the ions under electric field is based on the charge and hydrodynamic radius of ions. Carbohydrates contain hydroxyl groups that are ionised only in strongly alkaline conditions. After ionisation, the structures are suitable for electrophoretic analysis and identification through either indirect UV detection or electrochemical detection. The current work presents a new capillary zone electrophoretic method, relying on in-capillary reaction and direct UV detection at the wavelength of 270 nm. The method has been used for the simultaneous separation of neutral carbohydrates, including mono- and disaccharides and sugar alcohols. The in-capillary reaction produces negatively charged and UV-absorbing compounds. The optimised method was applied to real samples. The methodology is fast since no other sample preparation, except dilution, is required. A new method for aliphatic carboxylic acids in highly alkaline process liquids was developed. The goal was to develop a method for the simultaneous analysis of the dicarboxylic acids, hydroxy acids and volatile acids that are oxidation and degradation products of lignin and wood polysaccharides. The CZE method was applied to three process cases. First, the fate of lignin under alkaline oxidation conditions was monitored by determining the level of carboxylic acids from process solutions. In the second application, the degradation of spruce wood using alkaline and catalysed alkaline oxidation were compared by determining carboxylic acids from the process solutions. In addition, the effectiveness of membrane filtration and preparative liquid chromatography in the enrichment of hydroxy acids from black liquor was evaluated, by analysing the effluents with capillary electrophoresis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioprocess technology is a multidisciplinary industry that combines knowledge of biology and chemistry with process engineering. It is a growing industry because its applications have an important role in the food, pharmaceutical, diagnostics and chemical industries. In addition, the current pressure to decrease our dependence on fossil fuels motivates new, innovative research in the replacement of petrochemical products. Bioprocesses are processes that utilize cells and/or their components in the production of desired products. Bioprocesses are already used to produce fuels and chemicals, especially ethanol and building-block chemicals such as carboxylic acids. In order to enable more efficient, sustainable and economically feasible bioprocesses, the raw materials must be cheap and the bioprocesses must be operated at optimal conditions. It is essential to measure different parameters that provide information about the process conditions and the main critical process parameters including cell density, substrate concentrations and products. In addition to offline analysis methods, online monitoring tools are becoming increasingly important in the optimization of bioprocesses. Capillary electrophoresis (CE) is a versatile analysis technique with no limitations concerning polar solvents, analytes or samples. Its resolution and efficiency are high in optimized methods creating a great potential for rapid detection and quantification. This work demonstrates the potential and possibilities of CE as a versatile bioprocess monitoring tool. As a part of this study a commercial CE device was modified for use as an online analysis tool for automated monitoring. The work describes three offline CE analysis methods for the determination of carboxylic, phenolic and amino acids that are present in bioprocesses, and an online CE analysis method for the monitoring of carboxylic acid production during bioprocesses. The detection methods were indirect and direct UV, and laser-induced frescence. The results of this work can be used for the optimization of bioprocess conditions, for the development of more robust and tolerant microorganisms, and to study the dynamics of bioprocesses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selostus: Prosessoinnin vaikutus vehnän sivutuotteita sisältävien rehuseosten aminohappojen ohutsuolisulavuuteen sioilla

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selostus: Kuivaamattoman vehnäproteiinin ja soijarouheen aminohappojen ohutsuolisulavuus sioilla

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The simple single-ion activity coefficient equation originating from the Debye-Hückel theory was used to determine the thermodynamic and stoichiometric dissociation constants of weak acids from data concerning galvanic cells. Electromotive force data from galvanic cells without liquid junctions, which was obtained from literature, was studied in conjuction with the potentiometric titration data relating to aqueous solutions at 298.15 K. The dissociation constants of weak acids could be determined by the presented techniques and almost all the experimental data studied could be interpreted within the range of experimental error. Potentiometric titration has been used here and the calculation methods were developed to obtain the thermodynamic and stoichiometric dissociation constants of some weak acids in aqueous solutions at 298.15 K. The ionic strength of titrated solutions were adjusted using an inert electrolyte, namely, sodium or potassium chloride. Salt content alonedetermines the ionic strength. The ionic strength of the solutions studied varied from 0.059 mol kg-1 to 0.37 mol kg-1, and in some cases up to 1.0 mol kg-1. The following substances were investigated using potentiometric titration: aceticacid, propionic acid, L-aspartic acid, L-glutamic acid and bis(2,2-dimethyl-3-oxopropanol) amine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid-liquid extraction is a mass transfer process for recovering the desired components from the liquid streams by contacting it to non-soluble liquid solvent. Literature part of this thesis deals with theory of the liquid-liquid extraction and the main steps of the extraction process design. The experimental part of this thesis investigates the extraction of organic acids from aqueous solution. The aim was to find the optimal solvent for recovering the organic acids from aqueous solutions. The other objective was to test the selected solvent in pilot scale with packed column and compare the effectiveness of the structured and the random packing, the effect of dispersed phase selection and the effect of packing material wettability properties. Experiments showed that selected solvent works well with dilute organic acid solutions. The random packing proved to be more efficient than the structured packing due to higher hold-up of the dispersed phase. Dispersing the phase that is present in larger volume proved to more efficient. With the random packing the material that was wetted by the dispersed phase was more efficient due to higher hold-up of the dispersed phase. According the literature, the behavior is usually opposite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Percarboxylic acids are commonly used as disinfection and bleaching agents in textile, paper, and fine chemical industries. All of these applications are based on the oxidative potential of these compounds. In spite of high interest in these chemicals, they are unstable and explosive chemicals, which increase the risk of synthesis processes and transportation. Therefore, the safety criteria in the production process should be considered. Microreactors represent a technology that efficiently utilizes safety advantages resulting from small scale. Therefore, microreactor technology was used in the synthesis of peracetic acid and performic acid. These percarboxylic acids were produced at different temperatures, residence times and catalyst i.e. sulfuric acid concentrations. Both synthesis reactions seemed to be rather fast because with performic acid equilibrium was reached in 4 min at 313 K and with peracetic acid in 10 min at 343 K. In addition, the experimental results were used to study the kinetics of the formation of performic acid and peracetic acid. The advantages of the microreactors in this study were the efficient temperature control even in very exothermic reaction and good mixing due to the short diffusion distances. Therefore, reaction rates were determined with high accuracy. Three different models were considered in order to estimate the kinetic parameters such as reaction rate constants and activation energies. From these three models, the laminar flow model with radial velocity distribution gave most precise parameters. However, sulfuric acid creates many drawbacks in this synthesis process. Therefore, a ´´greener´´ way to use heterogeneous catalyst in the synthesis of performic acid in microreactor was studied. The cation exchange resin, Dowex 50 Wx8, presented very high activity and a long life time in this reaction. In the presence of this catalyst, the equilibrium was reached in 120 second at 313 K which indicates a rather fast reaction. In addition, the safety advantages of microreactors were investigated in this study. Four different conventional methods were used. Production of peracetic acid was used as a test case, and the safety of one conventional batch process was compared with an on-site continuous microprocess. It was found that the conventional methods for the analysis of process safety might not be reliable and adequate for radically novel technology, such as microreactors. This is understandable because the conventional methods are partly based on experience, which is very limited in connection with totally novel technology. Therefore, one checklist-based method was developed to study the safety of intensified and novel processes at the early stage of process development. The checklist was formulated using the concept of layers of protection for a chemical process. The traditional and three intensified processes of hydrogen peroxide synthesis were selected as test cases. With these real cases, it was shown that several positive and negative effects on safety can be detected in process intensification. The general claim that safety is always improved by process intensification was questioned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heli Kautosen esitys Digital Humanities 2012 -konferenssissa Hampurissa 20.7.2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kristiina Hormia-Poutasen esitys maailman kansalliskirjastojen johtajien (CDNL) tapaamisessa Helsingissä 13.8.2012.