10 resultados para Land cover classification
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Finland’s rural landscape has gone through remarkable changes from the 1950’s, due to agricultural developments. Changed farming practices have influenced especially traditional landscape management, and modifications in the arable land structure and grasslands transitions are notable. The review of the previous studies reveal the importance of the rural landscape composition and structure to species and landscape diversity, whereas including the relevance in presence of the open ditches, size of the field and meadow patches, topology of the natural and agricultural landscape. This land-change study includes applying remote sensed data from two time series and empirical geospatial analysis in Geographic Information Systems (GIS). The aims of this retrospective research is to detect agricultural landscape use and land cover change (LULCC) dynamics and discuss the consequences of agricultural intensification to landscape structure covering from the aspects of landscape ecology. Measurements of LULC are derived directly from pre-processed aerial images by a variety of analytical procedures, including statistical methods and image interpretation. The methodological challenges are confronted in the process of landscape classification and combining change detection approaches with landscape indices. Particular importance is paid on detecting agricultural landscape features at a small scale, demanding comprehensive understanding of such agroecosystems. Topological properties of the classified arable land and valley are determined in order to provide insight and emphasize the aspect the field edges in the agricultural landscape as important habitat. Change detection dynamics are presented with change matrix and additional calculations of gain, loss, swap, net change, change rate and tendencies are made. Transition’s possibility is computed following Markov’s probability model and presented with matrix, as well. Thesis’s spatial aspect is revealed with illustrative maps providing knowledge of location of the classified landscape categories and location of the dynamics of the changes occurred. It was assured that in Rekijoki valley’s landscape, remarkable changes in landscape has occurred. Landscape diversity has been strongly influenced by modern agricultural landscape change, as NP of open ditches has decreased and the MPS of the arable plot has decreased. Overall change in the diversity of the landscape is determined with the decrease of SHDI. Valley landscape considered as traditional land use area has experienced major transitional changes, as meadows class has lost almost one third of the area due to afforestation. Also, remarkable transitions have occurred from forest to meadow and arable land to built area. Boundaries measurement between modern and traditional landscape has indicated noticeable proportional increase in arable land-forest edge type and decrease in arable land-meadow edge type. Probability calculations predict higher future changes for traditional landscape, but also for arable land turning into built area.
Resumo:
Abstract
Resumo:
Tropical forests are sources of many ecosystem services, but these forests are vanishing rapidly. The situation is severe in Sub-Saharan Africa and especially in Tanzania. The causes of change are multidimensional and strongly interdependent, and only understanding them comprehensively helps to change the ongoing unsustainable trends of forest decline. Ongoing forest changes, their spatiality and connection to humans and environment can be studied with the methods of Land Change Science. The knowledge produced with these methods helps to make arguments about the actors, actions and causes that are behind the forest decline. In this study of Unguja Island in Zanzibar the focus is in the current forest cover and its changes between 1996 and 2009. The cover and changes are measured with often used remote sensing methods of automated land cover classification and post-classification comparison from medium resolution satellite images. Kernel Density Estimation is used to determine the clusters of change, sub-area –analysis provides information about the differences between regions, while distance and regression analyses connect changes to environmental factors. These analyses do not only explain the happened changes, but also allow building quantitative and spatial future scenarios. Similar study has not been made for Unguja and therefore it provides new information, which is beneficial for the whole society. The results show that 572 km2 of Unguja is still forested, but 0,82–1,19% of these forests are disappearing annually. Besides deforestation also vertical degradation and spatial changes are significant problems. Deforestation is most severe in the communal indigenous forests, but also agroforests are decreasing. Spatially deforestation concentrates to the areas close to the coastline, population and Zanzibar Town. Biophysical factors on the other hand do not seem to influence the ongoing deforestation process. If the current trend continues there should be approximately 485 km2 of forests remaining in 2025. Solutions to these deforestation problems should be looked from sustainable land use management, surveying and protection of the forests in risk areas and spatially targeted self-sustainable tree planting schemes.
Resumo:
Summary in English: Accuracy assessment for land use classification using the grid and road based sampling method
Resumo:
This thesis examines the local and regional scale determinants of biodiversity patterns using existing species and environmental data. The research focuses on agricultural environments that have experienced rapid declines of biodiversity during past decades. Existing digital databases provide vast opportunities for habitat mapping, predictive mapping of species occurrences and richness and understanding the speciesenvironment relationships. The applicability of these databases depends on the required accuracy and quality of the data needed to answer the landscape ecological and biogeographical questions in hand. Patterns of biodiversity arise from confounded effects of different factors, such as climate, land cover and geographical location. Complementary statistical approaches that can show the relative effects of different factors are needed in biodiversity analyses in addition to classical multivariate models. Better understanding of the key factors underlying the variation in diversity requires the analyses of multiple taxonomic groups from different perspectives, such as richness, occurrence, threat status and population trends. The geographical coincidence of species richness of different taxonomic groups can be rather limited. This implies that multiple geographical regions should be taken into account in order to preserve various groups of species. Boreal agricultural biodiversity and in particular, distribution and richness of threatened species is strongly associated with various grasslands. Further, heterogeneous agricultural landscapes characterized by moderate field size, forest patches and non-crop agricultural habitats enhance the biodiversity of rural environments. From the landscape ecological perspective, the major threats to Finnish agricultural biodiversity are the decline of connected grassland habitat networks, and general homogenization of landscape structure resulting from both intensification and marginalization of agriculture. The maintenance of key habitats, such as meadows and pastures is an essential task in conservation of agricultural biodiversity. Furthermore, a larger landscape context should be incorporated in conservation planning and decision making processes in order to respond to the needs of different species and to maintain heterogeneous rural landscapes and viable agricultural diversity in the future.
Resumo:
Forest inventories are used to estimate forest characteristics and the condition of forest for many different applications: operational tree logging for forest industry, forest health state estimation, carbon balance estimation, land-cover and land use analysis in order to avoid forest degradation etc. Recent inventory methods are strongly based on remote sensing data combined with field sample measurements, which are used to define estimates covering the whole area of interest. Remote sensing data from satellites, aerial photographs or aerial laser scannings are used, depending on the scale of inventory. To be applicable in operational use, forest inventory methods need to be easily adjusted to local conditions of the study area at hand. All the data handling and parameter tuning should be objective and automated as much as possible. The methods also need to be robust when applied to different forest types. Since there generally are no extensive direct physical models connecting the remote sensing data from different sources to the forest parameters that are estimated, mathematical estimation models are of "black-box" type, connecting the independent auxiliary data to dependent response data with linear or nonlinear arbitrary models. To avoid redundant complexity and over-fitting of the model, which is based on up to hundreds of possibly collinear variables extracted from the auxiliary data, variable selection is needed. To connect the auxiliary data to the inventory parameters that are estimated, field work must be performed. In larger study areas with dense forests, field work is expensive, and should therefore be minimized. To get cost-efficient inventories, field work could partly be replaced with information from formerly measured sites, databases. The work in this thesis is devoted to the development of automated, adaptive computation methods for aerial forest inventory. The mathematical model parameter definition steps are automated, and the cost-efficiency is improved by setting up a procedure that utilizes databases in the estimation of new area characteristics.
Resumo:
Tropical forests have decreased drastically especially in the Peruvian Amazon. In Peru deforestation is caused especially by migrant people; building of houses and infrastructure, clearing land for agricultural purposes and illegal logging and mining. Deforestation results in hindering ecosystem vitality, boosting climate change and decreasing livelihood possibilities. As a counterpoint to cutting down trees there is reforestation, which refers to re-establishment of forest cover. Deforestation and reforestation can be analysed in the light of Forest Transition theory. According to it, due to economic growth, the amount forest cover first diminishes but then starts to increase as the economy in general strengthens. Thus, the research framework is set to this theory. In this study the focus is on analysing socioeconomically sustainable reforestation possibilities in the community of Tingana, Peru. It is situated in a municipal conservation area around which deforestation has been heavy. Land cover change is analysed from LandsatTM satellite images covering a 15 year time period, 1995–2010, in the surroundings of the study area. Semi-structured interviews have been done with a sample size of 25 people and shed light on the perspectives on forests, reforestation and economical activities. The synthesis created from the two methods gives information about the possibilities to enforce reforestation in Tingana and the phase of forest transition in the area. The results show that forest cover has decreased around the surroundings of Tingana leaving the conservation area isolated from larger forest areas. Knowing that forest cover has also decreased inside the conservation area due to agricultural expansion it is certain that fragmentation harms biodiversity causing changes in local climate, which can have knock-on effects for farming and local livelihoods. Therefore reforestation is welcomed when it ensures both conservation and financial benefits and when carried out on locals’ terms. Regarding conservation and incomes the best option would be to plant native timber species together with fruit production species to create agroforestry systems. Economically the community should aim towards an economy that relies on ecotourism as it already practiced in the area. Reforestation could increase ecotourism, which then could in turn increase reforestation via revenues. Regarding forest transition it is likely that forest re-establishment will occur if reforestation along with ecotourism is implemented on long time scale.
Resumo:
Helsinki : The tourist society in Finland 1909 : Hull Tarkemmat teoskuvat osoitteessa http://urn.fi/URN:NBN:fi-fd2011-pp00001592
Resumo:
Life cycle assessment (LCA) is one of the most established quantitative tools for environmental impact assessment of products. To be able to provide support to environmentally-aware decision makers on environmental impacts of biomass value-chains, the scope of LCA methodology needs to be augmented to cover landuse related environmental impacts. This dissertation focuses on analysing and discussing potential impact assessment methods, conceptual models and environmental indicators that have been proposed to be implemented into the LCA framework for impacts of land use. The applicability of proposed indicators and impact assessment frameworks is tested from practitioners' perspective, especially focusing on forest biomass value chains. The impacts of land use on biodiversity, resource depletion, climate change and other ecosystem services is analysed and discussed and the interplay in between value choices in LCA modelling and the decision-making situations to be supported is critically discussed. It was found out that land use impact indicators are necessary in LCA in highlighting differences in impacts from distinct land use classes. However, many open questions remain on certainty of highlighting actual impacts of land use, especially regarding impacts of managed forest land use on biodiversity and ecosystem services such as water regulation and purification. The climate impact of energy use of boreal stemwood was found to be higher in the short term and lower in the long-term in comparison with fossil fuels that emit identical amount of CO2 in combustion, due to changes implied to forest C stocks. The climate impacts of energy use of boreal stemwood were found to be higher than the previous estimates suggest on forest residues and stumps. The product lifetime was found to have much higher influence on the climate impacts of woodbased value chains than the origin of stemwood either from thinnings or final fellings. Climate neutrality seems to be likely only in the case when almost all the carbon of harvested wood is stored in long-lived wooden products. In the current form, the land use impacts cannot be modelled with a high degree of certainty nor communicated with adequate level of clarity to decision makers. The academia needs to keep on improving the modelling framework, and more importantly, clearly communicate to decision-makers the limited certainty on whether land-use intensive activities can help in meeting the strict mitigation targets we are globally facing.
Resumo:
The objective of this thesis is to develop and generalize further the differential evolution based data classification method. For many years, evolutionary algorithms have been successfully applied to many classification tasks. Evolution algorithms are population based, stochastic search algorithms that mimic natural selection and genetics. Differential evolution is an evolutionary algorithm that has gained popularity because of its simplicity and good observed performance. In this thesis a differential evolution classifier with pool of distances is proposed, demonstrated and initially evaluated. The differential evolution classifier is a nearest prototype vector based classifier that applies a global optimization algorithm, differential evolution, to determine the optimal values for all free parameters of the classifier model during the training phase of the classifier. The differential evolution classifier applies the individually optimized distance measure for each new data set to be classified is generalized to cover a pool of distances. Instead of optimizing a single distance measure for the given data set, the selection of the optimal distance measure from a predefined pool of alternative measures is attempted systematically and automatically. Furthermore, instead of only selecting the optimal distance measure from a set of alternatives, an attempt is made to optimize the values of the possible control parameters related with the selected distance measure. Specifically, a pool of alternative distance measures is first created and then the differential evolution algorithm is applied to select the optimal distance measure that yields the highest classification accuracy with the current data. After determining the optimal distance measures for the given data set together with their optimal parameters, all determined distance measures are aggregated to form a single total distance measure. The total distance measure is applied to the final classification decisions. The actual classification process is still based on the nearest prototype vector principle; a sample belongs to the class represented by the nearest prototype vector when measured with the optimized total distance measure. During the training process the differential evolution algorithm determines the optimal class vectors, selects optimal distance metrics, and determines the optimal values for the free parameters of each selected distance measure. The results obtained with the above method confirm that the choice of distance measure is one of the most crucial factors for obtaining higher classification accuracy. The results also demonstrate that it is possible to build a classifier that is able to select the optimal distance measure for the given data set automatically and systematically. After finding optimal distance measures together with optimal parameters from the particular distance measure results are then aggregated to form a total distance, which will be used to form the deviation between the class vectors and samples and thus classify the samples. This thesis also discusses two types of aggregation operators, namely, ordered weighted averaging (OWA) based multi-distances and generalized ordered weighted averaging (GOWA). These aggregation operators were applied in this work to the aggregation of the normalized distance values. The results demonstrate that a proper combination of aggregation operator and weight generation scheme play an important role in obtaining good classification accuracy. The main outcomes of the work are the six new generalized versions of previous method called differential evolution classifier. All these DE classifier demonstrated good results in the classification tasks.