11 resultados para LEARNING-PROBLEMS
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This work investigates theoretical properties of symmetric and anti-symmetric kernels. First chapters give an overview of the theory of kernels used in supervised machine learning. Central focus is on the regularized least squares algorithm, which is motivated as a problem of function reconstruction through an abstract inverse problem. Brief review of reproducing kernel Hilbert spaces shows how kernels define an implicit hypothesis space with multiple equivalent characterizations and how this space may be modified by incorporating prior knowledge. Mathematical results of the abstract inverse problem, in particular spectral properties, pseudoinverse and regularization are recollected and then specialized to kernels. Symmetric and anti-symmetric kernels are applied in relation learning problems which incorporate prior knowledge that the relation is symmetric or anti-symmetric, respectively. Theoretical properties of these kernels are proved in a draft this thesis is based on and comprehensively referenced here. These proofs show that these kernels can be guaranteed to learn only symmetric or anti-symmetric relations, and they can learn any relations relative to the original kernel modified to learn only symmetric or anti-symmetric parts. Further results prove spectral properties of these kernels, central result being a simple inequality for the the trace of the estimator, also called the effective dimension. This quantity is used in learning bounds to guarantee smaller variance.
Resumo:
Recent advances in machine learning methods enable increasingly the automatic construction of various types of computer assisted methods that have been difficult or laborious to program by human experts. The tasks for which this kind of tools are needed arise in many areas, here especially in the fields of bioinformatics and natural language processing. The machine learning methods may not work satisfactorily if they are not appropriately tailored to the task in question. However, their learning performance can often be improved by taking advantage of deeper insight of the application domain or the learning problem at hand. This thesis considers developing kernel-based learning algorithms incorporating this kind of prior knowledge of the task in question in an advantageous way. Moreover, computationally efficient algorithms for training the learning machines for specific tasks are presented. In the context of kernel-based learning methods, the incorporation of prior knowledge is often done by designing appropriate kernel functions. Another well-known way is to develop cost functions that fit to the task under consideration. For disambiguation tasks in natural language, we develop kernel functions that take account of the positional information and the mutual similarities of words. It is shown that the use of this information significantly improves the disambiguation performance of the learning machine. Further, we design a new cost function that is better suitable for the task of information retrieval and for more general ranking problems than the cost functions designed for regression and classification. We also consider other applications of the kernel-based learning algorithms such as text categorization, and pattern recognition in differential display. We develop computationally efficient algorithms for training the considered learning machines with the proposed kernel functions. We also design a fast cross-validation algorithm for regularized least-squares type of learning algorithm. Further, an efficient version of the regularized least-squares algorithm that can be used together with the new cost function for preference learning and ranking tasks is proposed. In summary, we demonstrate that the incorporation of prior knowledge is possible and beneficial, and novel advanced kernels and cost functions can be used in algorithms efficiently.
Resumo:
Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.
Resumo:
Fluent health information flow is critical for clinical decision-making. However, a considerable part of this information is free-form text and inabilities to utilize it create risks to patient safety and cost-effective hospital administration. Methods for automated processing of clinical text are emerging. The aim in this doctoral dissertation is to study machine learning and clinical text in order to support health information flow.First, by analyzing the content of authentic patient records, the aim is to specify clinical needs in order to guide the development of machine learning applications.The contributions are a model of the ideal information flow,a model of the problems and challenges in reality, and a road map for the technology development. Second, by developing applications for practical cases,the aim is to concretize ways to support health information flow. Altogether five machine learning applications for three practical cases are described: The first two applications are binary classification and regression related to the practical case of topic labeling and relevance ranking.The third and fourth application are supervised and unsupervised multi-class classification for the practical case of topic segmentation and labeling.These four applications are tested with Finnish intensive care patient records.The fifth application is multi-label classification for the practical task of diagnosis coding. It is tested with English radiology reports.The performance of all these applications is promising. Third, the aim is to study how the quality of machine learning applications can be reliably evaluated.The associations between performance evaluation measures and methods are addressed,and a new hold-out method is introduced.This method contributes not only to processing time but also to the evaluation diversity and quality. The main conclusion is that developing machine learning applications for text requires interdisciplinary, international collaboration. Practical cases are very different, and hence the development must begin from genuine user needs and domain expertise. The technological expertise must cover linguistics,machine learning, and information systems. Finally, the methods must be evaluated both statistically and through authentic user-feedback.
Resumo:
Tämän kandidaatintyön tavoitteena on esittää kuvaus kulutusoppimisen teorioista ja tämän lisäksi kuvata käytännön sovelluksia liittyen kulutuskäyttäytymiseen ja mainontaan. On olemassa kaksi keskeistä ajattelutapaa liittyen oppimisen teorioihin. Ensimmäisen suuntauksen kannattajat näkevät oppimisen puhtaasti behavioristisena, eli että se on seurausta toistoista, ja siten ne näkevät yksilön "mustana laatikkona", jossa syötteenä on ärsyke ja suoritteena on tietty käytös. Toisen suuntauksen kannattajien mielestä oppiminen on kognitiivinen prosessi; kaikista yksinkertaisimmista tapauksista lähtien yksilö prosessoi informaatiota ratkaistakseen omia ongelmiaan. Käytännössä kumpaakin teoriaa tarvitaan selittämään oppimista ilmiönä, koska oppiminen on yhdistelmä toistoja ja kognitiivisia prosesseja. Työmme näyttää kuinka markkinoijat hyödyntävät näitä kahta teoriaa käytännössä mainonnassaan, tarkoituksenaan tuotemerkkinsä ja tuotteidensa asemointi markkinoilla suhteessa kilpailijoihinsa.
Resumo:
The skill of programming is a key asset for every computer science student. Many studies have shown that this is a hard skill to learn and the outcomes of programming courses have often been substandard. Thus, a range of methods and tools have been developed to assist students’ learning processes. One of the biggest fields in computer science education is the use of visualizations as a learning aid and many visualization based tools have been developed to aid the learning process during last few decades. Studies conducted in this thesis focus on two different visualizationbased tools TRAKLA2 and ViLLE. This thesis includes results from multiple empirical studies about what kind of effects the introduction and usage of these tools have on students’ opinions and performance, and what kind of implications there are from a teacher’s point of view. The results from studies in this thesis show that students preferred to do web-based exercises, and felt that those exercises contributed to their learning. The usage of the tool motivated students to work harder during their course, which was shown in overall course performance and drop-out statistics. We have also shown that visualization-based tools can be used to enhance the learning process, and one of the key factors is the higher and active level of engagement (see. Engagement Taxonomy by Naps et al., 2002). The automatic grading accompanied with immediate feedback helps students to overcome obstacles during the learning process, and to grasp the key element in the learning task. These kinds of tools can help us to cope with the fact that many programming courses are overcrowded with limited teaching resources. These tools allows us to tackle this problem by utilizing automatic assessment in exercises that are most suitable to be done in the web (like tracing and simulation) since its supports students’ independent learning regardless of time and place. In summary, we can use our course’s resources more efficiently to increase the quality of the learning experience of the students and the teaching experience of the teacher, and even increase performance of the students. There are also methodological results from this thesis which contribute to developing insight into the conduct of empirical evaluations of new tools or techniques. When we evaluate a new tool, especially one accompanied with visualization, we need to give a proper introduction to it and to the graphical notation used by tool. The standard procedure should also include capturing the screen with audio to confirm that the participants of the experiment are doing what they are supposed to do. By taken such measures in the study of the learning impact of visualization support for learning, we can avoid drawing false conclusion from our experiments. As computer science educators, we face two important challenges. Firstly, we need to start to deliver the message in our own institution and all over the world about the new – scientifically proven – innovations in teaching like TRAKLA2 and ViLLE. Secondly, we have the relevant experience of conducting teaching related experiment, and thus we can support our colleagues to learn essential know-how of the research based improvement of their teaching. This change can transform academic teaching into publications and by utilizing this approach we can significantly increase the adoption of the new tools and techniques, and overall increase the knowledge of best-practices. In future, we need to combine our forces and tackle these universal and common problems together by creating multi-national and multiinstitutional research projects. We need to create a community and a platform in which we can share these best practices and at the same time conduct multi-national research projects easily.
Resumo:
Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.
Resumo:
Inhimilliseen turvallisuuteen kriisinhallinnan kautta – oppimisen mahdollisuuksia ja haasteita Kylmän sodan jälkeen aseelliset konfliktit ovat yleensä alkaneet niin sanotuissa hauraissa valtioissa ja köyhissä maissa, ne ovat olleet valtioiden sisäisiä ja niihin on osallistunut ei-valtiollisia aseellisia ryhmittymiä. Usein ne johtavat konfliktikierteeseen, jossa sota ja vakaammat olot vaihtelevat. Koska kuolleisuus konflikteissa voi jäädä alle kansainvälisen määritelmän (1000 kuollutta vuodessa), kutsun tällaisia konflikteja ”uusiksi konflikteiksi”. Kansainvälinen yhteisö on pyrkinyt kehittämään kriisinhallinnan ja rauhanrakentamisen malleja, jotta pysyvä rauhantila saataisiin aikaiseksi. Inhimillinen turvallisuus perustuu näkemykseen, jossa kunnioitetaan jokaisen yksilön ihmisoikeuksia ja jolla on vaikutusta myös kriisinhallinnan ja rauhanrakentamisen toteuttamiseen. Tutkimukseen kuuluu kaksi empiiristä osaa: Delfoi tulevaisuuspaneeliprosessin sekä kriisinhallintahenkilöstön haastattelut. Viisitoista eri alojen kriisinhallinta-asiantuntijaa osallistui paneeliin, joka toteutettiin vuonna 2008. Paneelin tulosten mukaan tulevat konfliktit usein ovat uusien konfliktien kaltaisia. Lisäksi kriisinhallintahenkilöstöltä edellytetään vuorovaikutus- ja kommunikaatiokykyä ja luonnollisesti myös varsinaisia ammatillisia valmiuksia. Tulevaisuuspaneeli korosti vuorovaikutus- ja kommunikaatiotaitoja erityisesti siviilikriisinhallintahenkilöstön kompetensseissa, mutta samat taidot painottuivat sotilaallisen kriisinhallinnan henkilöstön kompetensseissakin. Kriisinhallinnassa tarvitaan myös selvää työnjakoa eri toimijoiden kesken. Kosovossa työskennelleen henkilöstön haastatteluaineisto koostui yhteensä 27 teemahaastattelusta. Haastateltavista 9 oli ammattiupseeria, 10 reservistä rekrytoitua rauhanturvaajaa ja 8 siviilikriisinhallinnassa työskennellyttä henkilöä. Haastattelut toteutettiin helmi- ja kesäkuun välisenä aikana vuonna 2008. Haastattelutuloksissa korostui vuorovaikutus- ja kommunikaatiotaitojen merkitys, sillä monissa käytännön tilanteissa haastateltavat olivat ratkoneet ongelmia yhteistyössä muun kriisinhallintahenkilöstön tai paikallisten asukkaiden kanssa. Kriisinhallinnassa toteutui oppimisprosesseja, jotka usein olivat luonteeltaan myönteisiä ja informaalisia. Tällaisten onnistumisten vaikutus yksilön minäkuvaan oli myönteinen. Tällaisia prosesseja voidaan kuvata ”itseä koskeviksi oivalluksiksi”. Kriisinhallintatehtävissä oppimisella on erityinen merkitys, jos halutaan kehittää toimintoja inhimillisen turvallisuuden edistämiseksi. Siksi on tärkeää, että kriisinhallintakoulutusta ja kriisinhallintatyössä oppimista kehitetään ottamaan huomioon oppimisen eri tasot ja ulottuvuudet sekä niiden merkitys. Informaaliset oppimisen muodot olisi otettava paremmin huomioon kriisinhallintakoulutusta ja kriisinhallintatehtävissä oppimista kehitettäessä. Palautejärjestelmää olisi kehitettävä eri tavoin. Koko kriisinhallintaoperaation on saatava tarvittaessa myös kriittistä palautetta onnistumisista ja epäonnistumisista. Monet kriisinhallinnassa työskennelleet kaipaavat kunnollista palautetta työrupeamastaan. Liian rutiininomaiseksi koettu palaute ei edistä yksilön oppimista. Spontaanisti monet haastatellut pitivät tärkeänä, että kriisinhallinnassa työskennelleillä olisi mahdollisuus debriefing- tyyppiseen kotiinpaluukeskusteluun. Pelkkä tällainen mahdollisuus ilmeisesti voisi olla monelle myönteinen uutinen, vaikka tilaisuutta ei hyödynnettäisikään. Paluu kriisinhallintatehtävistä Suomeen on monelle haasteellisempaa kuin näissä tehtävissä työskentelyn aloittaminen ulkomailla. Tutkimuksen tulokset kannustavat tutkimaan kriisinhallintaa oppimisen näkökulmasta. On myös olennaista, että kriisinhallinnan palautejärjestelmiä kehitetään mahdollisimman hyvin edistämään sekä yksilöllistä että organisatorista oppimista kriisinhallinnassa. Kriisinhallintaoperaatio on oppimisympäristö. Kriisinhallintahenkilöstön kommunikaatio- ja vuorovaikutustaitojen kehittäminen on olennaista tavoiteltaessa kestävää rauhanprosessia, jossa konfliktialueen asukkaatkin ovat mukana.
Resumo:
The context of this study is corporate e-learning, with an explicit focus on how digital learning design can facilitate self-regulated learning (SRL). The field of e-learning is growing rapidly. An increasing number of corporations use digital technology and elearning for training their work force and customers. E-learning may offer economic benefits, as well as opportunities for interaction and communication that traditional teaching cannot provide. However, the evolving variety of digital learning contexts makes new demands on learners, requiring them to develop strategies to adapt and cope with novel learning tools. This study derives from the need to learn more about learning experiences in digital contexts in order to be able to design these properly for learning. The research question targets how the design of an e-learning course influences participants’ self-regulated learning actions and intentions. SRL involves learners’ ability to exercise agency in their learning. Micro-level SRL processes were targeted by exploring behaviour, cognition, and affect/motivation in relation to the design of the digital context. Two iterations of an e-learning course were tested on two groups of participants (N=17). However, the exploration of SRL extends beyond the educational design research perspective of comparing the effects of the changes to the course designs. The study was conducted in a laboratory with each participant individually. Multiple types of data were collected. However, the results presented in this thesis are based on screen observations (including eye tracking) and video-stimulated recall interviews. These data were integrated in order to achieve a broad perspective on SRL. The most essential change evident in the second course iteration was the addition of feedback during practice and the final test. Without feedback on actions there was an observable difference between those who were instruction-directed and those who were self-directed in manipulating the context and, thus, persisted whenever faced with problems. In the second course iteration, including the feedback, this kind of difference was not found. Feedback provided the tipping point for participants to regulate their learning by identifying their knowledge gaps and to explore the learning context in a targeted manner. Furthermore, the course content was consistently seen from a pragmatic perspective, which influenced the participants’ choice of actions, showing that real life relevance is an important need of corporate learners. This also relates to assessment and the consideration of its purpose in relation to participants’ work situation. The rigidity of the multiple choice questions, focusing on the memorisation of details, influenced the participants to adapt to an approach for surface learning. It also caused frustration in cases where the participants’ epistemic beliefs were incompatible with this kind of assessment style. Triggers of positive and negative emotions could be categorized into four levels: personal factors, instructional design of content, interface design of context, and technical solution. In summary, the key design choices for creating a positive learning experience involve feedback, flexibility, functionality, fun, and freedom. The design of the context impacts regulation of behaviour, cognition, as well as affect and motivation. The learners’ awareness of these areas of regulation in relation to learning in a specific context is their ability for design-based epistemic metareflection. I describe this metareflection as knowing how to manipulate the context behaviourally for maximum learning, being metacognitively aware of one’s learning process, and being aware of how emotions can be regulated to maintain volitional control of the learning situation. Attention needs to be paid to how the design of a digital learning context supports learners’ metareflective development as digital learners. Every digital context has its own affordances and constraints, which influence the possibilities for micro-level SRL processes. Empowering learners in developing their ability for design-based epistemic metareflection is, therefore, essential for building their digital literacy in relation to these affordances and constraints. It was evident that the implementation of e-learning in the workplace is not unproblematic and needs new ways of thinking about learning and how we create learning spaces. Digital contexts bring a new culture of learning that demands attitude change in how we value knowledge, measure it, define who owns it, and who creates it. Based on the results, I argue that digital solutions for corporate learning ought to be built as an integrated system that facilitates socio-cultural connectivism within the corporation. The focus needs to shift from designing static e-learning material to managing networks of social meaning negotiation as part of a holistic corporate learning ecology.
Resumo:
Traditionally metacognition has been theorised, methodologically studied and empirically tested from the standpoint mainly of individuals and their learning contexts. In this dissertation the emergence of metacognition is analysed more broadly. The aim of the dissertation was to explore socially shared metacognitive regulation (SSMR) as part of collaborative learning processes taking place in student dyads and small learning groups. The specific aims were to extend the concept of individual metacognition to SSMR, to develop methods to capture and analyse SSMR and to validate the usefulness of the concept of SSMR in two different learning contexts; in face-to-face student dyads solving mathematical word problems and also in small groups taking part in inquiry-based science learning in an asynchronous computer-supported collaborative learning (CSCL) environment. This dissertation is comprised of four studies. In Study I, the main aim was to explore if and how metacognition emerges during problem solving in student dyads and then to develop a method for analysing the social level of awareness, monitoring, and regulatory processes emerging during the problem solving. Two dyads comprised of 10-year-old students who were high-achieving especially in mathematical word problem solving and reading comprehension were involved in the study. An in-depth case analysis was conducted. Data consisted of over 16 (30–45 minutes) videotaped and transcribed face-to-face sessions. The dyads solved altogether 151 mathematical word problems of different difficulty levels in a game-format learning environment. The interaction flowchart was used in the analysis to uncover socially shared metacognition. Interviews (also stimulated recall interviews) were conducted in order to obtain further information about socially shared metacognition. The findings showed the emergence of metacognition in a collaborative learning context in a way that cannot solely be explained by individual conception. The concept of socially-shared metacognition (SSMR) was proposed. The results highlighted the emergence of socially shared metacognition specifically in problems where dyads encountered challenges. Small verbal and nonverbal signals between students also triggered the emergence of socially shared metacognition. Additionally, one dyad implemented a system whereby they shared metacognitive regulation based on their strengths in learning. Overall, the findings suggested that in order to discover patterns of socially shared metacognition, it is important to investigate metacognition over time. However, it was concluded that more research on socially shared metacognition, from larger data sets, is needed. These findings formed the basis of the second study. In Study II, the specific aim was to investigate whether socially shared metacognition can be reliably identified from a large dataset of collaborative face-to-face mathematical word problem solving sessions by student dyads. We specifically examined different difficulty levels of tasks as well as the function and focus of socially shared metacognition. Furthermore, the presence of observable metacognitive experiences at the beginning of socially shared metacognition was explored. Four dyads participated in the study. Each dyad was comprised of high-achieving 10-year-old students, ranked in the top 11% of their fourth grade peers (n=393). Dyads were from the same data set as in Study I. The dyads worked face-to-face in a computer-supported, game-format learning environment. Problem-solving processes for 251 tasks at three difficulty levels taking place during 56 (30–45 minutes) lessons were video-taped and analysed. Baseline data for this study were 14 675 turns of transcribed verbal and nonverbal behaviours observed in four study dyads. The micro-level analysis illustrated how participants moved between different channels of communication (individual and interpersonal). The unit of analysis was a set of turns, referred to as an ‘episode’. The results indicated that socially shared metacognition and its function and focus, as well as the appearance of metacognitive experiences can be defined in a reliable way from a larger data set by independent coders. A comparison of the different difficulty levels of the problems suggested that in order to trigger socially shared metacognition in small groups, the problems should be more difficult, as opposed to moderately difficult or easy. Although socially shared metacognition was found in collaborative face-to-face problem solving among high-achieving student dyads, more research is needed in different contexts. This consideration created the basis of the research on socially shared metacognition in Studies III and IV. In Study III, the aim was to expand the research on SSMR from face-to-face mathematical problem solving in student dyads to inquiry-based science learning among small groups in an asynchronous computer-supported collaborative learning (CSCL) environment. The specific aims were to investigate SSMR’s evolvement and functions in a CSCL environment and to explore how SSMR emerges at different phases of the inquiry process. Finally, individual student participation in SSMR during the process was studied. An in-depth explanatory case study of one small group of four girls aged 12 years was carried out. The girls attended a class that has an entrance examination and conducts a language-enriched curriculum. The small group solved complex science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry during 22 lessons (á 45–minute). Students’ network discussion were recorded in written notes (N=640) which were used as study data. A set of notes, referred to here as a ‘thread’, was used as the unit of analysis. The inter-coder agreement was regarded as substantial. The results indicated that SSMR emerges in a small group’s asynchronous CSCL inquiry process in the science domain. Hence, the results of Study III were in line with the previous Study I and Study II and revealed that metacognition cannot be reduced to the individual level alone. The findings also confirm that SSMR should be examined as a process, since SSMR can evolve during different phases and that different SSMR threads overlapped and intertwined. Although the classification of SSMR’s functions was applicable in the context of CSCL in a small group, the dominant function was different in the asynchronous CSCL inquiry in the small group in a science activity than in mathematical word problem solving among student dyads (Study II). Further, the use of different analytical methods provided complementary findings about students’ participation in SSMR. The findings suggest that it is not enough to code just a single written note or simply to examine who has the largest number of notes in the SSMR thread but also to examine the connections between the notes. As the findings of the present study are based on an in-depth analysis of a single small group, further cases were examined in Study IV, as well as looking at the SSMR’s focus, which was also studied in a face-to-face context. In Study IV, the general aim was to investigate the emergence of SSMR with a larger data set from an asynchronous CSCL inquiry process in small student groups carrying out science activities. The specific aims were to study the emergence of SSMR in the different phases of the process, students’ participation in SSMR, and the relation of SSMR’s focus to the quality of outcomes, which was not explored in previous studies. The participants were 12-year-old students from the same class as in Study III. Five small groups consisting of four students and one of five students (N=25) were involved in the study. The small groups solved ill-defined science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry over a total period of 22 hours. Written notes (N=4088) detailed the network discussions of the small groups and these constituted the study data. With these notes, SSMR threads were explored. As in Study III, the thread was used as the unit of analysis. In total, 332 notes were classified as forming 41 SSMR threads. Inter-coder agreement was assessed by three coders in the different phases of the analysis and found to be reliable. Multiple methods of analysis were used. Results showed that SSMR emerged in all the asynchronous CSCL inquiry processes in the small groups. However, the findings did not reveal any significantly changing trend in the emergence of SSMR during the process. As a main trend, the number of notes included in SSMR threads differed significantly in different phases of the process and small groups differed from each other. Although student participation was seen as highly dispersed between the students, there were differences between students and small groups. Furthermore, the findings indicated that the amount of SSMR during the process or participation structure did not explain the differences in the quality of outcomes for the groups. Rather, when SSMRs were focused on understanding and procedural matters, it was associated with achieving high quality learning outcomes. In turn, when SSMRs were focused on incidental and procedural matters, it was associated with low level learning outcomes. Hence, the findings imply that the focus of any emerging SSMR is crucial to the quality of the learning outcomes. Moreover, the findings encourage the use of multiple research methods for studying SSMR. In total, the four studies convincingly indicate that a phenomenon of socially shared metacognitive regulation also exists. This means that it was possible to define the concept of SSMR theoretically, to investigate it methodologically and to validate it empirically in two different learning contexts across dyads and small groups. In-depth micro-level case analysis in Studies I and III showed the possibility to capture and analyse in detail SSMR during the collaborative process, while in Studies II and IV, the analysis validated the emergence of SSMR in larger data sets. Hence, validation was tested both between two environments and within the same environments with further cases. As a part of this dissertation, SSMR’s detailed functions and foci were revealed. Moreover, the findings showed the important role of observable metacognitive experiences as the starting point of SSMRs. It was apparent that problems dealt with by the groups should be rather difficult if SSMR is to be made clearly visible. Further, individual students’ participation was found to differ between students and groups. The multiple research methods employed revealed supplementary findings regarding SSMR. Finally, when SSMR was focused on understanding and procedural matters, this was seen to lead to higher quality learning outcomes. Socially shared metacognition regulation should therefore be taken into consideration in students’ collaborative learning at school similarly to how an individual’s metacognition is taken into account in individual learning.
Resumo:
Computer Supported Collaborative Learning (CSCL) is a teaching and learning approach which is widely adopted. However there are still some problems can be found when CSCL takes place. Studies show that using game-like mechanics can increase motivation, engagement, as well as modelling behaviors of players. Gamification is a rapid growing trend by applying the same mechanics. It refers to use game design elements in non-game contexts. This thesis is about combining gamification concept and computer supported collaborative learning together in software engineering education field. And finally a gamified prototype system is designed.