7 resultados para LACTIS
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Probiotic bifidobacteria are used in the prevention and treatment of childhood diseases. On the other hand, these bacteria are also connected to dental caries. The purpose of the present work was to test a food supplement containing Bifidobacterium animalis subsp. lactis BB-12 (B. lactis BB-12) and xylitol, and to investigate its health effects, properties and safety when used in a novel pacifier in early childhood. In a double-blind, placebo-controlled trial, newborn infants (n=163) were assigned randomly to receive B. lactis BB-12, xylitol, or sorbitol from the age of 1– 2 monthsto 2 years with a pacifier or a spoon. Children were followed up to four years of age. A part of the parents participating in the clinical trial evaluated the feasibility of the novel administration method. The pattern of tablet release from the pouch of the pacifier was tested in adults. The food supplement tablet containing B. lactis BB-12 and xylitol could be delivered in a safe and controlled way with the novel pacifier. The early administration of B. lactis BB-12 did not result in permanent oral colonization of this probiotic or affect the colonization of mutans streptococci in early childhood. Moreover, B. lactis BB-12 did not increase the occurrence of caries. Controlled administration of B. lactis BB-12 significantly reduced the incidence of respiratory infections during the first eight months of life in a Finnish population with breastfed infants. To conclude, administration of B. lactis BB-12 in early childhood is safe with regard to the future dental health of the child. In addition, B. lactis BB-12 may add to the protection against respiratory infections provided by human breast milk in infancy.
Resumo:
Immaturity of the gut barrier system in the newborn has been seen to underlie a number of chronic diseases originating in infancy and manifesting later in life. The gut microbiota and breast milk provide the most important maturing signals for the gut-related immune system and reinforcement of the gut mucosal barrier function. Recently, the composition of the gut microbiota has been proposed to be instrumental in control of host body weight and metabolism as well as the inflammatory state characterizing overweight and obesity. On this basis, inflammatory Western lifestyle diseases, including overweight development, may represent a potential target for probiotic interventions beyond the well documented clinical applications. The purpose of the present undertaking was to study the efficacy and safety of perinatal probiotic intervention. The material comprised two ongoing, prospective, double-blind NAMI (Nutrition, Allergy, Mucosal immunology and Intestinal microbiota) probiotic interventions. In the mother-infant nutrition and probiotic study altogether 256 women were randomized at their first trimester of pregnancy into a dietary intervention and a control group. The intervention group received intensive dietary counselling provided by a nutritionist, and were further randomized at baseline, double-blind, to receive probiotics (Lactobacillus rhamnosus GG and Bifidobacterium lactis) or placebo. The intervention period extended from the first trimester of pregnancy to the end of exclusive breastfeeding. In the allergy prevention study altogether 159 women were randomized, double-blind, to receive probiotics (Lactobacillus rhamnosus GG) or placebo 4 weeks before expected delivery, the intervention extending for 6 months postnatally. Additionally, patient data on all premature infants with very low birth weight (VLBW) treated in the Department of Paediatrics, Turku University Hospital, during the years 1997 - 2008 were utilized. The perinatal probiotic intervention reduced the risk of gestational diabetes mellitus (GDM) in the mothers and perinatal dietary counselling reduced that of fetal overgrowth in GDM-affected pregnancies. Early gut microbiota modulation with probiotics modified the growth pattern of the child by restraining excessive weight gain during the first years of life. The colostrum adiponectin concentration was demonstrated to be dependent on maternal diet and nutritional status during pregnancy. It was also higher in the colostrum received by normal-weight compared to overweight children at the age of 10 years. The early perinatal probiotic intervention and the postnatal probiotic intervention in VLBW infants were shown to be safe. To conclude, the findings in this study provided clinical evidence supporting the involvement of the initial microbial and nutritional environment in metabolic programming of the child. The manipulation of early gut microbial communities with probiotics might offer an applicable strategy to impact individual energy homeostasis and thus to prevent excessive body-weight gain. The results add weight to the hypothesis that interventions aiming to prevent obesity and its metabolic consequences later in life should be initiated as early as during the perinatal period.
Resumo:
The prevalence of inflammatory based diseases has increased in industrialized countries over the last decades. For allergic diseases, two primary hypotheses have been proposed to explain this phenomenon, namely the hygiene and dietary evolution based hypothesis. Particularly, the reduced early exposure to microbes and an increase in the amount of polyunsaturated fatty acids (especially n-6 PUFA) in the diet have been discussed. Often, these two factors have been studied independently, even though both factors have been shown to possess potential health benefits and their mode of action to share similar mechanisms. The hypothesis of the present study was that demonstrate that PUFA and probiotics are not separate entities as such but do interact with each other. In the present study, we investigated whether maternal diet and atopic status influence the PUFA composition of breast milk and serum fatty acids of infants, and whether the fatty acid absorption and utilization of infant formula fatty acids is affected by supplementation of infant formula with probiotic bacteria (Lactobacillus GG and Bifidobacterium lactis Bb-12). Moreover, we investigated the mechanisms by which different PUFA influence the physicochemical and functional properties of probiotics as well as functionality of epithelial cells in vitro. We demonstrated a carry-over effect of dietary fatty acids from maternal diet via breast milk into infants’ serum lipid fatty acids. Our data confirmed the previously shown allergy –related PUFA level imbalances, though it did not fully support the impaired desaturation and elongation capacity hypothesis. We also showed that PUFA incorporation into phospholipids of infants was influenced by probiotics in infant formula in a strain dependent manner. Especially,Bifidobacterium lactis Bb-12 in infant formula promoted the utilization of n-3 PUFA. Mechanistically, we demonstrated that probiotics (Lactobacillus GG, Lactobacillus casei Shirota and Lactobacillus bulgaricus) did incorporate and interconvert exogenous free PUFA in the growth medium into bacterial fatty acids strain and PUFA dependently. In general, high concentrations of free PUFA inhibited the growth and mucus adhesion of probiotics, whereas low concentrations of specific long chain PUFA were found to promote the growth and mucus adhesion of Lactobacillus casei Shirota. These effects were paralleled with only minor alterations in hydrophobicity and electron donor – electron acceptor properties of lactobacilli. Furthermore, free PUFA were also demonstrated to alter the adhesion capacity of the intestinal epithelial cells; n-6 PUFA tended to inhibit the Caco-2 adhesion of probiotics, whereas n-3 PUFA had either no or minor effects or even promote the bacterial adhesion (especially Lactobacillus casei Shirota) to PUFA treated Caco-2 cells. The results of this study demonstrate the close and bilateral interactions between dietary PUFA and probiotics. Probiotics were shown to influence the absorption and utilization of dietary PUFA, whereas PUFA were shown to alter the functional properties of both probiotics and mucosal epithelia. These findings suggest that a more thorough understanding of interactions between PUFA and intestinal microbiota is a prerequisite, when the beneficial effects of new functional foods containing probiotics are designed and planned for human intervention studies.
Resumo:
The endogenous microbiota, constituting the microbes that live inside and on humans, is estimated to outnumber human cells by a factor of ten. This commensal microbial population has an important role in many physiological functions, with the densest microbiota population found in the colon. The colonic microbiota is a highly complex and diverse bacterial ecosystem, and a delicate balance exists between the gut microbiota and its host. An imbalance in the microbial ecosystem may lead to severe symptoms in and also beyond the gastrointestinal tract. Due to the important role of the gut microbiota in human health, means of its modification have been introduced in the dietary concepts of pro-, pre- and synbiotics. Prebiotics, which are usually carbohydrates, strive to selectively influence beneficial microbes resident in the colon with the aim of modifying the composition and functionality of the commensal microbial population towards a purportedly healthier one. The study of prebiotic effects on colonic micro-organisms is typically done by using human faecal material, though this provides relatively little information on bacterial populations and metabolic events in different parts of the colon. For this reason, several in vitro models have been developed to investigate the gut microbiota. The aim of this doctoral thesis was to screen through some of the promising prebiotic candidates, characterize their effects on the microbiota through the use of two in vitro methods (pure microbial cultures and a colon simulator model) and to evaluate their potential as emerging prebiotics or synbiotics when combined with the probiotic Bifidobacterium lactis . As a result of the screening work and subsequent colon simulation studies, several compounds with promising features were identified. Xylo-oligosaccharides (XOS), which have previously already shown promise as prebiotic compounds, were well fermented by several probiotic Bifidobacterium lactis strains in pure culture studies and in the following simulation studies utilizing the complex microbiota by endogenous B. lactis Another promising compound was panose, a trisaccharide belonging to isomalto-oligosaccharides (IMO) that also was also able to modify the microbiota in vitro by increasing the number of beneficial microbes investigated. Panose has not been widely studied previously and therefore, this thesis work provided the first data on panose fermentation in mixed colonic microbiota. Galacto-oligosaccharide (GOS) is an established prebiotic, and it was studied here in conjunction with another potential polygosaccharide polydextrose (PDX) and probiotic B. lactis Bi-07. In this final study, the synbiotics including GOS were more effective than the constituting pro- or prebiotics alone in modulating the microbiota composition, thus indicating a synergy resulting from the combination. The results obtained in this in vitro work can be, and have already been, utilized in product development aimed at the nutritional modification of the human colonic microbiota. Some of the compounds have entered the human clinical intervention phase to nvestigate in more detail the prebiotic and synbiotic properties seen in these in vitro studies.
Resumo:
A rapid increase in allergic diseases in Western societies has led to the conclusion that our modern lifestyle is a risk factor for immune dysregulation. Potential culprits and benefactors are searched among early dietary and microbial exposures, which may act to program later allergic disease. The aim of this thesis was to investigate the role of early maternal and child nutrition in reducing the risk of child allergy. The study population comprised of 256 mother – child pairs from families with a history of allergy participating in a randomized controlled dietary counseling and probiotic intervention (Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12) study from early pregnancy onwards. The dietary counseling aimed for a diet complying with dietary recommendations for pregnant and lactating women, with special attention to fat quality. Maternal dietary counseling was reflected in cord blood fatty acids suggesting better essential fatty acid status in infants in the counseling group. Dietary counseling with probiotics or placebo had no effect on child allergy risk, but associations between maternal diet during pregnancy and breastfeeding and child allergic outcomes were found in secondary analyses. During pregnancy, milk intake was related to decreased and cheese intake to increased risk of child atopic eczema. During breastfeeding, intake of vitamin C was related to increased risk of asthma and intake of egg was related to decreased risk of atopic eczema. The timing of introduction of complementary foods to infant’s diet was not associated with risk of atopic eczema, when adjusted with parental opinion of child allergic symptoms (i.e., potential reverse causality). In conclusion, the results demonstrate that infant fatty acid supply can be modified via maternal dietary changes. In addition, interesting associations of maternal diet with child allergy risk were discovered. However, no difference in the incidence of allergic diseases with dietary counseling was observed. This suggests that more potent dietary interventions might be necessitated to induce clinical risk reduction of allergy. Highrisk families can safely adhere to dietary recommendations for pregnant and lactating women, and the results support the current conception that no additional benefit is gained with delaying introduction of complementary feeding.
Resumo:
Aino Toiviainen Probiotics and oral health: in vitro and clinical studies University of Turku, Faculty of Medicine, Institute of Dentistry, Periodontology, Finnish Doctoral Program in Oral Sciences (FINDOS-Turku), Turku, Finland Annales Universitatis Turkuensis, Sarja – Ser. D, Medica-Odontologica. Painosalama Oy, Turku, Finland, 2015 Probiotics are used, for example, to prevent and treat diarrhea, allergies and respiratory infections, and there is an increasing interest to use probiotics also for oral health purposes. The most commonly used probiotic bacteria are lactobacilli and bifidobacteria, which are acidogenic and aciduric. From the oral point of view, use of these probiotics may, at least in theory, mean an increased risk of caries. In this thesis, the effects of probiotics on oral microbial composition, acid production of dental plaque and gingival health were studied through in vitro studies and two clinical studies. In a randomized, double-blind and crossover study, 13 healthy adults were allocated into two groups. Half of the subjects first consumed Lactobacillus rhamnosus GG tablets twice a day for two weeks, and after the washout period, L. reuteri tablets twice a day for two weeks. The other half of the subjects used the tablets in reverse order. In another controlled, randomized and double-blind study, 62 healthy adults were allocated into two groups. One group used the test tablets containing L. rhamnosus GG and B. lactis BB-12 and the other group used control tablets without probiotics. The recommendation for the use of the tablets was 4 per day for 4 weeks. Probiotic lactobacilli interfered with S. mutans biofilm formation and the adhesion of S. mutans to saliva-coated hydroxyapatite in vitro. No effect was found in S. mutans levels in the three-species biofilms. In clinical studies, the studied probiotics had no effect on the acid production of plaque. The counts of mutans streptococci and the oral microbial composition remained the same. Tablets containing L. rhamnosus GG and Bifidobacterium animalis subsp. lactis BB-12 did decrease the amount of plaque and gingival bleeding. According to our results, it seems that probiotics have beneficial effects on gingival health. The present results confirmed that probiotics are safe and have beneficial effects on oral health. Since the consumption of probiotics by the general population is steadily increasing, an understanding of the functions of probiotics in the oral cavity has become more important. Keywords: lactobacilli, bifidobacteria, caries, periodontal disease, mutans streptococci, probiotics
Resumo:
Maternal obesity has been shown to increase the risk for adverse reproductive health outcomes such as gestational diabetes, hypertension, and preeclampsia. Moreover, several studies have indicated that overnutrition and maternal obesity adversely program the development of offspring by predisposing them to obesity and other chronic diseases later in life. The exact molecular mechanisms leading to developmental programming are not known, but it has recently been suggested that obesity-related low-grade inflammation, gut microbiota and epigenetic gene regulation (in particularly DNA methylation) participate in the developmental programming phenomenon. The aim of this thesis was to evaluate the effect of diet, dietary counseling and probiotic intervention during pregnancy in endorsing favorable developmental programming. The study population consisted of 256 mother-child pairs participating in a prospective, double-blinded dietary counselling and probiotic intervention (Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12) NAMI (Nutrition, Allergy, Mucosal immunology and Intestinal microbiota) study. Further overweight women were recruited from maternal welfare clinics in the area of Southwest Finland and from the prenatal outpatient clinic at Turku University Hospital. Dietary counseling was aimed to modify women’s dietary intake to comply with the recommended intake for pregnant women. Specifically, counseling aimed to affect the type of fat consumed and to increase the amount of fiber in the women’s diets. Leptin concentration was used as a marker for obesity-related low-grade inflammation, antioxidant vitamin status as an efficiency marker for dietary counselling and epigenetic DNA methylation of obesity related genes as a marker for probiotics influence. Results revealed that dietary intake may modify obesity-associated low-grade inflammation as measured by serum leptin concentration. Specifically, dietary fiber intake may lower leptin concentration in women, whereas the intakes of saturated fatty acids and sucrose have an opposite effect. Neither dietary counselling nor probiotic intervention modified leptin concentration in women, but probiotics tended to increase children’s leptin concentration. Dietary counseling was an efficient tool for improving antioxidant vitamin intake in women, which was reflected in the breast milk vitamin concentration. Probiotic intervention affected DNA methylation of dozens of obesity and weight gain related genes both in women and their children. Altogether these results indicate that dietary components, dietary counseling and probiotic supplementation during pregnancy may modify the intrauterine environment towards favorable developmental programming.