24 resultados para Institute of Software
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Monimutkaisen tietokonejärjestelmän suorituskykyoptimointi edellyttää järjestelmän ajonaikaisen käyttäytymisen ymmärtämistä. Ohjelmiston koon ja monimutkaisuuden kasvun myötä suorituskykyoptimointi tulee yhä tärkeämmäksi osaksi tuotekehitysprosessia. Tehokkaampien prosessorien käytön myötä myös energiankulutus ja lämmöntuotto ovat nousseet yhä suuremmiksi ongelmiksi, erityisesti pienissä, kannettavissa laitteissa. Lämpö- ja energiaongelmien rajoittamiseksi on kehitetty suorituskyvyn skaalausmenetelmiä, jotka edelleen lisäävät järjestelmän kompleksisuutta ja suorituskykyoptimoinnin tarvetta. Tässä työssä kehitettiin visualisointi- ja analysointityökalu ajonaikaisen käyttäytymisen ymmärtämisen helpottamiseksi. Lisäksi kehitettiin suorituskyvyn mitta, joka mahdollistaa erilaisten skaalausmenetelmien vertailun ja arvioimisen suoritusympäristöstä riippumatta, perustuen joko suoritustallenteen tai teoreettiseen analyysiin. Työkalu esittää ajonaikaisesti kerätyn tallenteen helposti ymmärrettävällä tavalla. Se näyttää mm. prosessit, prosessorikuorman, skaalausmenetelmien toiminnan sekä energiankulutuksen kolmiulotteista grafiikkaa käyttäen. Työkalu tuottaa myös käyttäjän valitsemasta osasta suorituskuvaa numeerista tietoa, joka sisältää useita oleellisia suorituskykyarvoja ja tilastotietoa. Työkalun sovellettavuutta tarkasteltiin todellisesta laitteesta saatua suoritustallennetta sekä suorituskyvyn skaalauksen simulointia analysoimalla. Skaalausmekanismin parametrien vaikutus simuloidun laitteen suorituskykyyn analysoitiin.
Resumo:
Ohjelmistojen tärkeys nykypäivän yhteiskunnalle kasvaa jatkuvasti. Monia ohjelmistoprojekteja vaivaavat ongelmat aikataulussa pysymisestä, korkean tuottavuuden ylläpitämisestä ja riittävän korkeasta laadusta. Ohjelmistokehitysprosessien parantamisessa on naiden ongelmien minimoimiseksi tehty suuria investointeja. Investointien syynä on ollut olettamus ohjelmistokehityksen kapasiteetin suora riippuvuus tuotteen laadusta. Tämän tutkimuksen tarkoituksena oli tutkia Ohjelmistokehitysprosessien parantamisen mahdollisuuksia. Olemassaolevat ohjelmistokehityksen ja Ohjelmistokehitysprosessin parantamisen mallit, tekniikat ja metodologiat esiteltiin. Esiteltyjen mallien, tekniikoiden ja metodologioiden soveltuvuus analysoitiin ja suositus mallien käytöstä annettiin.
Resumo:
This thesis studies evaluation of software development practices through an error analysis. The work presents software development process, software testing, software errors, error classification and software process improvement methods. The practical part of the work presents results from the error analysis of one software process. It also gives improvement ideas for the project. It was noticed that the classification of the error data was inadequate in the project. Because of this it was impossible to use the error data effectively. With the error analysis we were able to show that there were deficiencies in design and analyzing phases, implementation phase and in testing phase. The work gives ideas for improving error classification and for software development practices.
Resumo:
The front end of innovation is regarded as one of the most important steps in building new software products or services, and the most significant benefits in software development can be achieved through improvements in the front end activities. Problems in the front end phase have an impact on customer dissatisfaction with delivered software, and on the effectiveness of the entire software development process. When these processes are improved, the likelihood of delivering high quality software and business success increases. This thesis highlights the challenges and problems related to the early phases of software development, and provides new methods and tools for improving performance in the front end activities of software development. The theoretical framework of this study comprises two fields of research. The first section belongs to the field of innovation management, and especially to the management of the early phases of the innovation process, i.e. the front end of innovation. The second section of the framework is closely linked to the processes of software engineering, especially to the early phases of the software development process, i.e. the practice of requirements engineering. Thus, this study extends the theoretical knowledge and discloses the differences and similarities in these two fields of research. In addition, this study opens up a new strand for academic discussion by connecting these research directions. Several qualitative business research methodologies have been utilized in the individual publications to solve the research questions. The theoretical and managerial contribution of the study can be divided into three areas: 1) processes and concepts, 2) challenges and development needs, and 3) means and methods for the front end activities of software development. First, the study discloses the difference and similarities between the concepts of the front end of innovation and requirements engineering, and proposes a new framework for managing the front end of the software innovation process, bringing business and innovation perspectives into software development. Furthermore, the study discloses managerial perceptions of the similarities and differences in the concept of the front end of innovation between the software industry and the traditional industrial sector. Second, the study highlights the challenges and development needs in the front end phase of software development, especially challenges in communication, such as linguistic problems, ineffective communication channels, a communication gap between users/customers and software developers, and participation of multiple persons in software development. Third, the study proposes new group methods for improving the front end activities of software development, especially customer need assessment, and the elicitation of software requirements.
Resumo:
The size and complexity of projects in the software development are growing very fast. At the same time, the proportion of successful projects is still quite low according to the previous research. Although almost every project's team knows main areas of responsibility which would help to finish project on time and on budget, this knowledge is rarely used in practice. So it is important to evaluate the success of existing software development projects and to suggest a method for evaluating success chances which can be used in the software development projects. The main aim of this study is to evaluate the success of projects in the selected geographical region (Russia-Ukraine-Belarus). The second aim is to compare existing models of success prediction and to determine their strengths and weaknesses. Research was done as an empirical study. A survey with structured forms and theme-based interviews were used as the data collection methods. The information gathering was done in two stages. At the first stage, project manager or someone with similar responsibilities answered the questions over Internet. At the second stage, the participant was interviewed; his or her answers were discussed and refined. It made possible to get accurate information about each project and to avoid errors. It was found out that there are many problems in the software development projects. These problems are widely known and were discussed in literature many times. The research showed that most of the projects have problems with schedule, requirements, architecture, quality, and budget. Comparison of two models of success prediction presented that The Standish Group overestimates problems in project. At the same time, McConnell's model can help to identify problems in time and avoid troubles in future. A framework for evaluating success chances in distributed projects was suggested. The framework is similar to The Standish Group model but it was customized for distributed projects.
Resumo:
Software testing is one of the essential parts in software engineering process. The objective of the study was to describe software testing tools and the corresponding use. The thesis contains examples of software testing tools usage. The study was conducted as a literature study, with focus on current software testing practices and quality assurance standards. In the paper a tool classifier was employed, and testing tools presented in study were classified according to it. We found that it is difficult to distinguish current available tools by certain testing activities as many of them contain functionality that exceeds scopes of a single testing type.
Resumo:
Nowadays software testing and quality assurance have a great value in software development process. Software testing does not mean a concrete discipline, it is the process of validation and verification that starts from the idea of future product and finishes at the end of product’s maintenance. The importance of software testing methods and tools that can be applied on different testing phases is highly stressed in industry. The initial objectives for this thesis were to provide a sufficient literature review on different testing phases and for each of the phases define the method that can be effectively used for improving software’s quality. Software testing phases, chosen for study are: unit testing, integration testing, functional testing, system testing, acceptance testing and usability testing. The research showed that there are many software testing methods that can be applied at different phases and in the most of the cases the choice of the method should be done depending on software type and its specification. In the thesis the problem, concerned to each of the phases was identified; the method that can help in eliminating this problem was suggested and particularly described.
Resumo:
The value and benefits of user experience (UX) are widely recognized in the modern world and UX is seen as an integral part of many fields. This dissertation integrates UX and understanding end users with the early phases of software development. The concept of UX is still unclear, as witnessed by more than twenty-five definitions and ongoing argument about its different aspects and attributes. This missing consensus forms a problem in creating a link between UX and software development: How to take the UX of end users into account when it is unclear for software developers what UX stands for the end users. Furthermore, currently known methods to estimate, evaluate and analyse UX during software development are biased in favor of the phases where something concrete and tangible already exists. It would be beneficial to further elaborate on UX in the beginning phases of software development. Theoretical knowledge from the fields of UX and software development is presented and linked with surveyed and analysed UX attribute information from end users and UX professionals. Composing the surveys around the identified 21 UX attributes is described and the results are analysed in conjunction with end user demographics. Finally the utilization of the gained results is explained with a proof of concept utility, the Wizard of UX, which demonstrates how UX can be integrated into early phases of software development. The process of designing, prototyping and testing this utility is an integral part of this dissertation. The analyses show statistically significant dependencies between appreciation towards UX attributes and surveyed end user demographics. In addition, tests conducted by software developers and industrial UX designer both indicate the benefits and necessity of the prototyped Wizard of UX utility. According to the conducted tests, this utility meets the requirements set for it: It provides a way for software developers to raise their know-how of UX and a possibility to consider the UX of end users with statistical user profiles during the early phases of software development. This dissertation produces new and relevant information for the UX and software development communities by demonstrating that it is possible to integrate UX as a part of the early phases of software development.
Resumo:
One of the most crucial tasks for a company offering a software product is to decide what new features should be implemented in the product’s forthcoming versions. Yet, existing studies show that this is also a task with which many companies are struggling. This problem has been claimed to be ambiguous and changing. There are better or worse solutions to the problem, but no optimal one. Furthermore, the criteria determining the success of the solution keeps changing due to continuously changing competition, technologies and market needs. This thesis seeks to gain a deeper understanding of the challenges that companies have reportedly faced in determining the requirements for their forthcoming product versions. To this end, product management related activities are explored in seven companies. Following grounded theory approach, the thesis conducts four iterations of data analysis, where each of the iterations goes beyond the previous one. The thesis results in a theory proposal intended to 1) describe the essential characteristics of organizations’ product management challenges, 2) explain the origins of the perceived challenges and 3) suggest strategies to alleviate the perceived challenges. The thesis concludes that current product management approaches are becoming inadequate to deal with challenges that have multiple and conflicting interpretations, different value orientations, unclear goals, contradictions and paradoxes. This inadequacy continues to increase until current beliefs and assumptions about the product management challenges are questioned and a new paradigm for dealing with the challenges is adopted.
Resumo:
This thesis describes an approach to overcoming the complexity of software product management (SPM) and consists of several studies that investigate the activities and roles in product management, as well as issues related to the adoption of software product management. The thesis focuses on organizations that have started the adoption of SPM but faced difficulties due to its complexity and fuzziness and suggests the frameworks for overcoming these challenges using the principles of decomposition and iterative improvements. The research process consisted of three phases, each of which provided complementary results and empirical observation to the problem of overcoming the complexity of SPM. Overall, product management processes and practices in 13 companies were studied and analysed. Moreover, additional data was collected with a survey conducted worldwide. The collected data were analysed using the grounded theory (GT) to identify the possible ways to overcome the complexity of SPM. Complementary research methods, like elements of the Theory of Constraints were used for deeper data analysis. The results of the thesis indicate that the decomposition of SPM activities depending on the specific characteristics of companies and roles is a useful approach for simplifying the existing SPM frameworks. Companies would benefit from the results by adopting SPM activities more efficiently and effectively and spending fewer resources on its adoption by concentrating on the most important SPM activities.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Software is a key component in many of our devices and products that we use every day. Most customers demand not only that their devices should function as expected but also that the software should be of high quality, reliable, fault tolerant, efficient, etc. In short, it is not enough that a calculator gives the correct result of a calculation, we want the result instantly, in the right form, with minimal use of battery, etc. One of the key aspects for succeeding in today's industry is delivering high quality. In most software development projects, high-quality software is achieved by rigorous testing and good quality assurance practices. However, today, customers are asking for these high quality software products at an ever-increasing pace. This leaves the companies with less time for development. Software testing is an expensive activity, because it requires much manual work. Testing, debugging, and verification are estimated to consume 50 to 75 per cent of the total development cost of complex software projects. Further, the most expensive software defects are those which have to be fixed after the product is released. One of the main challenges in software development is reducing the associated cost and time of software testing without sacrificing the quality of the developed software. It is often not enough to only demonstrate that a piece of software is functioning correctly. Usually, many other aspects of the software, such as performance, security, scalability, usability, etc., need also to be verified. Testing these aspects of the software is traditionally referred to as nonfunctional testing. One of the major challenges with non-functional testing is that it is usually carried out at the end of the software development process when most of the functionality is implemented. This is due to the fact that non-functional aspects, such as performance or security, apply to the software as a whole. In this thesis, we study the use of model-based testing. We present approaches to automatically generate tests from behavioral models for solving some of these challenges. We show that model-based testing is not only applicable to functional testing but also to non-functional testing. In its simplest form, performance testing is performed by executing multiple test sequences at once while observing the software in terms of responsiveness and stability, rather than the output. The main contribution of the thesis is a coherent model-based testing approach for testing functional and performance related issues in software systems. We show how we go from system models, expressed in the Unified Modeling Language, to test cases and back to models again. The system requirements are traced throughout the entire testing process. Requirements traceability facilitates finding faults in the design and implementation of the software. In the research field of model-based testing, many new proposed approaches suffer from poor or the lack of tool support. Therefore, the second contribution of this thesis is proper tool support for the proposed approach that is integrated with leading industry tools. We o er independent tools, tools that are integrated with other industry leading tools, and complete tool-chains when necessary. Many model-based testing approaches proposed by the research community suffer from poor empirical validation in an industrial context. In order to demonstrate the applicability of our proposed approach, we apply our research to several systems, including industrial ones.
Resumo:
The vast majority of our contemporary society owns a mobile phone, which has resulted in a dramatic rise in the amount of networked computers in recent years. Security issues in the computers have followed the same trend and nearly everyone is now affected by such issues. How could the situation be improved? For software engineers, an obvious answer is to build computer software with security in mind. A problem with building software with security is how to define secure software or how to measure security. This thesis divides the problem into three research questions. First, how can we measure the security of software? Second, what types of tools are available for measuring security? And finally, what do these tools reveal about the security of software? Measuring tools of these kind are commonly called metrics. This thesis is focused on the perspective of software engineers in the software design phase. Focus on the design phase means that code level semantics or programming language specifics are not discussed in this work. Organizational policy, management issues or software development process are also out of the scope. The first two research problems were studied using a literature review while the third was studied using a case study research. The target of the case study was a Java based email server called Apache James, which had details from its changelog and security issues available and the source code was accessible. The research revealed that there is a consensus in the terminology on software security. Security verification activities are commonly divided into evaluation and assurance. The focus of this work was in assurance, which means to verify one’s own work. There are 34 metrics available for security measurements, of which five are evaluation metrics and 29 are assurance metrics. We found, however, that the general quality of these metrics was not good. Only three metrics in the design category passed the inspection criteria and could be used in the case study. The metrics claim to give quantitative information on the security of the software, but in practice they were limited to evaluating different versions of the same software. Apart from being relative, the metrics were unable to detect security issues or point out problems in the design. Furthermore, interpreting the metrics’ results was difficult. In conclusion, the general state of the software security metrics leaves a lot to be desired. The metrics studied had both theoretical and practical issues, and are not suitable for daily engineering workflows. The metrics studied provided a basis for further research, since they pointed out areas where the security metrics were necessary to improve whether verification of security from the design was desired.