13 resultados para Impurities in electrolytic cell
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Kemira Chemicals Oy in Äetsä produces sodium chlorate as its main product. It is produced with electrolysis in electrolyte cells. During the manufacturing process impurities, out of which the largest one is iron, accumulate in the cells. These impurities are removed in cell wash with hydrochloric acid liquid, after which the wash water is precipitated with sodium hydroxide and sodium carbonate, and filtered with filter press. After the treatment the wash water is recycled back to the manufacturing process. The aim of this thesis was primarily to improve the treatment of wash water in order to remove the impurities with low costs. This would result in more impurity-free water and in sufficient capacity of impurity removal. The second aim was to maintain the chromium in the treated wash water because it forms a diaphragm of chromium hydroxide to cathode which prevents the flow of anions to cathode. The literature part investigates properties, use and manufacturing of sodium chlorate, electrolyte cell and its wash technique, and impurities of wash water. The beginning of the applied part investigates alternatives of separation methods which could be used to improve the treatment of wash water. In the experiments an optimum pH for the precipitation of wash water was determined, and a research of the use of sodium hydroxide, sodium carbonate, calcium hydroxide and calcium chloride as a precipitant was carried out. Also a suitable flocculant and a filter cloth for the treatment of wash water were determined. Finally, process changes were introduced, partly by applying the current equipment, and the costs and savings were calculated.
Resumo:
Th2-solujen erilaistumista ohjaavat säätelyverkostot ja niiden tutkiminen proteomiikan avulla Astma ja allergiat ovat laajalle levinneitä ja vakavia sairauksia, joista kärsivät miljoonat ihmiset ympäri maailmaa. Koe-eläimillä tehdyt tutkimukset osoittavat, että interleukiini-4 (IL-4) on tärkeä allergisen astman ja allergioiden kehittymiselle ja kroonistumiselle. Se ohjaa T-auttajasolujen (Th-solujen) kehittymistä Th2-tyypin soluiksi, joilla on merkittävä rooli näiden tautien puhkeamisessa. Th2-solut tuottavat myös itse IL-4:ä, joka edesauttaa taudin seuraavien vaiheiden kehittymistä. Erityisesti STAT6-proteiini, joka aktivoituu IL-4-stimulaation seurauksena, on tarpeen Th2- vasteen syntymiselle ja kroonistumiselle antigeenin aiheuttamassa keuhkoputkien astmaattisessa tulehduksessa. Väitöskirjatyöni tarkoituksena oli käyttää kaksidimensionaaliseen elektroforeesiin (2- DE) perustuvaa proteomiikkaa ja massaspektrometriaa uusien Th2-solujen erilaistumista säätelevien proteiinien tunnistamiseksi. Erilaistumattomat Th-solut eristettiin vastasyntyneen napaverestä tai hiiren pernasta. Solut aktivoitiin Tsolureseptorin ja ns. ko-stimulatoristen reseptorien kautta ja erilaistettiin joko Th1- tai Th2-suuntaan vastaavasti erilaistavien IL-12- ja IL-4-sytokiinien avulla. Ensimmäisessä tutkimuksessa in vitro -erilaistettujen Th1- ja Th2-solujen proteomeja verrattiin keskenään proteiinien ilmenemisessä tai proteiinimodifikaatioissa olevien erojen tunnistamiseksi. Kaksi muuta päätutkimusta keskittyivät IL-4:n aiheuttamaan proteiinitason säätelyyn ensimmäisen vuorokauden aikana T-soluaktivaation jälkeen. Näistä ensimmäisessä IL-4:n aiheuttamia eroja tunnistettiin aktivoiduista ihmisen Thsoluista. IL-4:n todettiin säätelevän useita proteiineja kaspaasien välittämissä signalointiteissä sekä lisäävän T-solujen elävyyttä ja aktivoitumista. Toisessa tutkimuksessa STAT6-poistogeenisten hiirien lymfosyyttien proteomia verrattiin villityypin kontrollisoluihin T-soluaktivaation ja IL-4-stimulaation jälkeen. Näissä tutkimuksissa karakterisoitiin useita uusia IL-4:n ja STAT6:n kohdeproteiineja ja löydettiin uusia säätelyverkostoja. Tutkimustulokset ovat johtaneet uusiin Th2-erilaistumismekanismeja koskeviin hypoteeseihin.
Resumo:
Histamine acts as a neurotransmitter in the central nervous system. Brain histamine in synthesized in neurons located to the posterior hypothalamus, from where these neurons send their projections to different parts of the brain. Released histamine participates in the regulation of several physiological functions such as arousal, attention and body homeostasis. Disturbances in the histaminergic system have been detected in diseases such as epilepsy, sleep disorders, anxiety, depression, Alzheimer’s disease, and schizophrenia. The purpose of this thesis was to develop optimal culture conditions for the histaminergic neurons, to study their detailed morphology, and to find out their significance in the kainic acid (KA)-induced neuronal death in the immature rat hippocampus. The morphology of the histaminergic neurons in vitro was comparable with the earlier findings. Histamine-containing vesicles were found in the axon but also in the cell body and dendrites suggesting a possibility for the somatodendritic release. Moreover, histamine was shown to be colocalized with the vesicular monoamine transporter 2 (VMAT2) suggesting that VMAT2 transports histamine to the subcellular storage vesicles. Furthermore, histamine was localized with γ-aminobutyric acid (GABA) in distinct storage vesicles and with neuropeptide galanin partly in the same storage vesicles suggesting different corelease mechanisms for GABA and galanin with histamine. In the organotypic hippocampal slice cultures, KA-induced neuronal death was first detected 12 h after the treatment being restricted mainly to the CA3 subregion. Moreover, cell death was irreversible, since the 48 h recovery period did not save the cells, but instead increased the damage. Finally, neuronal death was suggested to be necrotic, since intracellular apoptotic pathways were not activated, and the morphological changes detected with the electron microscopy were characteristic for necrosis. In the coculture system of the hippocampal and posterior hypothalamic slices, histaminergic neurons significantly decreased epileptiform burst activity and neuronal death in the hippocampal slices, this effect being mediated by histamine 1 (H1) and 3 (H3) receptors. In conclusion, the histaminergic neurons were maintained succesfully in the in vitro conditions exhibiting comparable morphological characteristics as detected earlier in vivo. Moreover, they developed functional innervations within the hippocampal slices in the coculture system. Finally, the KA-induced regionspecific, irreversible and necrotic hippocampal pyramidal cell damage was significantly decreased by the histaminergic neurons through H1 and H3 receptors.
Resumo:
Transcription factors play a crucial role in the regulation of cell behavior by modulating gene expression profiles. Previous studies have described a dual role for the AP-1 family transcription factor c-Jun in the regulation of cellular fate. In various cell types weak and transient activations of c-Jun N-terminal kinase (JNK) and c-Jun appear to contribute to proliferation and survival, whereas strong and prolonged activation of JNK and c-Jun result in apoptosis. These opposite roles played by c-Jun are cell type specific and the molecular mechanisms defining these antonymous c-Jun-mediated responses remain incompletely understood. c-Jun activity in transformed cells is regulated by signalling cascades downstream of oncoproteins such as Ras and Raf. In addition, the pro-proliferative role and the survival promoting function for c-Jun has been described in various cancer models. Furthermore, c-Jun was described to be overexpressed in different cancer types. However, the molecular mechanisms by which c-Jun exerts these oncogenic functions are not all clearly established. Therefore it is of primary interest to further identify molecular mechanisms and functions for c-Jun in cancer. Regulation of gene expression is tightly dependent on accurate protein-protein interactions. Therefore, co-factors for c-Jun may define the functions for c-Jun in cancer. Identification of protein-protein interactions promoting cancer may provide novel possibilities for cancer treatment. In this study, we show that DNA topoisomerase I (TopoI) is a transcriptional co-factor for c-Jun. Moreover, c-Jun and TopoI together promote expression of epidermal growth factor receptor (EGFR) in cancer cells. We also show that the clinically used TopoI inhibitor topotecan reduces EGFR expression. Importantly, the effect of TopoI on EGFR transcription was shown to depend on c-Jun as Jun-/- cells or cells treated with JNK inhibitor SP600125 are resistant to topotecan treatment both in regulation of EGFR expression and cell proliferation. Moreover, c-Jun regulates the nucleolar localization and the function of the ribonucleic acid (RNA) helicase DDX21, a previously identified member of c-Jun protein complex. In addition, c-Jun stimulates rRNA processing by supporting DDX21 rRNA binding. Finally, this study characterizes a DDX21 dependent expression of cyclin dependent kinase (Cdk) 6, a correlation of DDX21 expression with prostate cancer progression and a substrate binding dependency of DDX21 nucleolar localization in prostate cancer cells. Taken together, the results of this study validate the c-Jun-TopoI interaction and precise the c-Jun-DDX21 interaction. Moreover, these results show the importance for protein-protein interaction in the regulation of their cellular functions in cancer cell behavior. Finally, the results presented here disclose new exciting therapeutic opportunities for cancer treatment.
Resumo:
Molekyylimarkkerit ja pitkäaikainen alfainterferonihoito munuaissyövässä Munuaissyöpäpotilaiden viiden vuoden elossaololuku on noin 50 %. Aikaisempien tutkimuksien mukaan viiden vuoden elossaololuku metastasoituneessa munuaissyövässä on 3-16 %, kun käytettiin alfainterferonia sisältävää hoitoa. Tyypillisesti alfainterferonia on käytetty vähemmäin kuin 6 kuukautta. Avoimia kysymyksiä ovat alfainterferonin optimaalinen hoitoannos ja hoidon kesto yksin tai yhdessä uusien täsmähoitojen kanssa. Tärkeimmät tavoitteet olivat tutkia 1) jaksotetun pitkäaikaisen alfainterferonihoidon tehoa ja siedettävyyttä metastasoituneessa munuaissyövässä ja 2) p53-, Ki-67- ja COX-2-proteiinituotannon ennusteellista merkitystä munuaissyövässä. Tutkimuksessa 117 metastasoituneelle munuaissyöpää sairastaneelle potilaalle etsittiin yksilöllinen hänen sietämänsä maksimaalinen hoitoannos rekombinanttia alfa2a-interferonia (Roferon-ATM). Hoitoa pyrittiin jatkamaan 24 kuukauden ajan. Kolmen hoitoviikon jälkeen pidettiin yhden viikon tauko. Hoito lopetettiin, jos ilmaantui vakavia haittavaikutuksia tai tauti eteni. Toisessa tutkimuksessa proteiinituotanto analysoitiin immunohistokemiallisesti munuaissyöpäpotilaiden kasvainnäytteistä, joita oli säilytetty parafiinissa. Kasvainnäytteet oli otettu talteen munuaisen poistoleikkauksen yhteydessä. Nämä potilaat jaettiin kolmeen eri ryhmään: metastasointi primaarivaiheessa (n=29), metastasointi myöhemmin (n=37) ja ei metastasointia (n=51). Keskimääräinen alfainterferonihoidon kesto oli 11 kuukautta (kk) [0,5 – 32 kk]. Objektiivinen hoitovaste todettiin 17 %:lla, tautitilanne pysyi ennallaan 42 %:lla ja myöhäinen vaste (yli 12 kk:tta hoidon aloittamisesta) todettiin 3 %:lla. Aika vasteen saavuttamisesta taudin etenemiseen oli keskimäärin 8 kk ja elinaika 19,1 kk. Viiden vuoden elossaololuku oli 16 %. Jos metastasoituneella munuaissyöpäpotilaalla oli keuhkometastasointi, hän selvisi todennäköisemmin viisi vuotta kuin muut potilaat. Henkeä uhkaavia sivuvaikutuksia ei todettu. Yli 12 kk:n ajan kestävä alfainterferonihoito on hyödyllistä niille potilaille, jotka ovat saaneet objektiivisen hoitovasteen tai tautitilanne on pysynyt ennallaan. Positiivinen p53- ja Ki-67-ekspressio yhdessä viittaavat suureen metastasoinnin todennäköisyyteen. Positiivinen COX-2-ekspressio viittaa viivästyneeseen metastaasien ilmaantumiseen. Metastasoituneilla potilailla positiiviset p53- ja Ki-67-ekspressiot viittaavat huonoon ennusteeseen, mutta positiivinen COX-2 ekspressio viittaa suotuisaan ennusteeseen. Positiivinen COX-2- ja negatiivinen Ki-67-ekspressio yhdessä viittaavat parantuneeseen ennusteeseen metastasoituneessa munuaissyövässä.
Resumo:
The nucleus is a membrane enclosed organelle containing most of the genetic information of the cell in the form of chromatin. The nucleus, which can be divided into many sub-organelles such as the nucleoli, the Cajal bodies and the nuclear lamina, is the site for several essential cellular functions such as the DNA replication and its regulation and most of the RNA synthesis and processing. The nucleus is often affected in disease: the size and the shape of the nucleus, the chromatin distribution and the size of the nucleoli have remained the basis for the grading of several cancers. The maintenance of the vertebrate body shape depends on the skeleton. Similarly, in a smaller context, the shape of the cell and the nucleus are mainly regulated by the cytoskeletal and nucleoskeletal elements. The nuclear matrix, which by definition is a detergent, DNase and salt resistant proteinaceous nuclear structure, has been suggested to form the nucleoskeleton responsible for the nuclear integrity. Nuclear mitotic apparatus protein, NuMA, a component of the nuclear matrix, is better known for its mitotic spindle organizing function. NuMA is one of the nuclear matrix proteins suggested to participate in the maintenance of the nuclear integrity during interphase but its interphase function has not been solved to date. This thesis study concentrated on the role of NuMA and the nuclear matrix as structural and functional components of the interphase nucleus. The first two studies clarified the essential role of caspase-3 in the disintegration of the nuclear structures during apoptosis. The second study also showed NuMA and chromatin to co-elute from cells in significant amounts and the apoptotic cleavage of NuMA was clarified to have an important role in the dissociation of NuMA from the chromatin. The third study concentrated on the interphase function of NuMA showing NuMA depletion to result in cell cycle arrest and the cytoplasmic relocalization of NuMA interaction partner GAS41. We suggest that the relocalization of the transcription factor GAS41 may mediate the cell cycle arrest. Thus, this study has given new aspects in the interactions of NuMA, chromatin and the nuclear matrix.
Resumo:
Most advanced tumours face periods of reduced oxygen availability i.e. hypoxia. During these periods tumour cells undergo adaptive changes enabling their survival under adverse conditions. In cancer hypoxia-induced cellular changes cause tumour progression, hinder cancer treatment and are indicative of poor prognosis. Within cells the main regulator of hypoxic responses is the hypoxia-inducible factor (HIF). HIF governs the expression of over a hundred hypoxia-inducible genes that regulate a number of cellular functions such as angiogenesis, glucose metabolism and cell migration. Therefore the activity of HIF must be tightly governed. HIF is regulated by a family of prolyl hydroxylase enzymes, PHDs, which mark HIF for destruction in normoxia. Under hypoxic conditions PHDs lose much of their enzymatic activity as they need molecular oxygen as a cofactor. Out of the three PHDs (PHD1, 2 and 3) PHD2 has been considered to be the main HIF-1 regulator in normoxic conditions. PHD3 on the other hand shows the most robust induction in response to oxygen deprivation and it has been implied as the main HIF-1 regulator under prolonged hypoxia. SQSTM1/p62 (p62) is an adaptor protein that functions through its binding motifs to bring together proteins in order to regulate signal transduction. In non-stressed situations p62 levels are kept low but its expression has been reported to be upregulated in many cancers. It has a definitive role as an autophagy receptor and as such it serves a key function in cancer cell survival decisions. In my thesis work I evaluated the significance of PHD3 in cancer cell and tumour biology. My results revealed that PHD3 has a dual role in cancer cell fate. First, I demonstrated that PHD3 forms subcellular protein aggregates in oxygenated carcinoma cells and that this aggregation promotes apoptosis induction in a subset of cancer cells. In these aggregates an adaptor protein SQSTM1/p62 interacts with PHD3 and in so doing regulates PHD3 expression. SQSTM1/p62 expression is needed to keep PHD3 levels low in normoxic conditions. Its levels rapidly decrease in response to hypoxia allowing PHD3 protein levels to be upregulated and the protein to be diffusely expressed throughout the cell. The interaction between PHD3 and SQSTM1/p62 limits the ability of PHD3 to function on its hydroxylation target protein HIF-1alpha. Second, the results indicate that when PHD3 is upregulated under hypoxia it protects cancer cells by allowing cell cycle to proceed from G1 to S-phase. My data demonstrates that PHD3 may either cause cell death or protect the cells depending on its expression pattern and the oxygen availability of tumours.
Resumo:
Kalciumjonen reglerar flera processer i celler såsom transkribering av gener, celldelning, cellernas rörlighet och celldöd. Därför har cellerna utvecklat många mekanismer för att reglera den intracellulära kalciumkoncentrationen. Kalciumkanaler spelar en viktig roll i denna regleringsprocess. TRPC-kanalerna (eng. canonical transient receptor potential) är en familj av jonkanaler med sju medlemmar (TRPC1-7) vars regleringsmekanismer och fysiologiska roller är varierande. TRPC2-kanalens fysiologiska signifikans, samt hur kanalen regleras, är dåligt karakteriserad. För första gången, rapporterar vi närvaron av TRPC2 kanalen i råttans sköldkörtelceller samt primära sköldkörtelceller från råtta. Hos gnagare har TRPC2 antagits vara exklusivt uttryckt i det vomeronasala organet. För att undersöka den fysiologiska betydelsen av kanalen, har vi utvecklat stabila celler med nedreglerat TRPC2 (shTRPC2) m.h.a. shRNA-teknik. Nedreglering av TRPC2 resulterade i stora skillnader i flera viktiga cellulära funktioner och i regleringen av sköldkörtelcellernas cellsignalering. Nedreglering av TRPC2 orsakade minskad agonist-beroende frigivning av kalcium från det endoplasmatiska nätverket, samt minskat agonist-beroende inflöde av extracellulärt kalcium, men ökade det basala kalciuminflödet. Uttrycket av PKCβ1 och PKCδ, SERCA-aktiviteten och kalciumhalten i det endoplasmatiska nätverket minskade i shTRPC2 celler. Kommunikation mellan kalcium- och cAMP-signalering påvisades vara TRPC2-beroende, vilket visades reglera uttrycket av TSH-receptorn. Vi undersökte också betydelsen av TRPC2 kanalen i reglering av sköldkörtelcellers proliferation, migration, vidhäftning och invasion; processer som alla var dämpade i shTRPC2 celler. Samamnfattningsvis påvisade dessa resultat en ny och viktig fysiologisk betydelse för TRPC2 kanalerna.
Resumo:
The cytoskeleton is a key feature of both prokaryotic and eukaryotic cells. Itis comprised of three protein families, one of which is the intermediate filaments (IFs). Of these, the IFs are the largest and most diverse. The IFs are expressed throughout life, and are involved in the regulation of cell differentiation, homeostasis, ageing and pathogenesis. The IFs not only provide structural integrity to the cell, they are also involved in a range of cellular functions from organelle trafficking and cell migration to signalling transduction. The IFs are highly dynamic proteins, able to respond and adapt their network rapidly in response to intra- and extra- cellular cues. Consequently they interact with a whole host of cellular signalling proteins, regulating function, and activity, and cellular localisation. While the function of some of the better-known IFs such as the keratins is well studied, the understanding of the function of two IFs, nestin and vimentin, is poor. Nestin is well known as a marker of differentiation and is expressed in some cancers. In cancer, nestin is primarily described as is a promoter of cell motility, however, how it fulfils this role remains undefined. Vimentin too is expressed in cancer, and is known to promote cell motility and is used as a marker for epithelial to mesenchymal transition (EMT). It is only in the last decade that studies have addressed the role that vimentin plays in cell motility and EMT. This work provides novel insight into how the IFs, nestin and vimentin regulate cell motility and invasion. In particular we show that nestin regulates the cellular localisation and organisation of two key facilitators of cell migration, focal adhesion kinase and integrins. We identify nestin as a regulator of extracellular matrix degradation and integrin-mediated cell invasion. Two further studies address the specific regulation of vimentin by phosphorylation. A detailed characterisation study identified key phosphorylation sites on vimentin, which are critical for proper organisation of the vimentin network. Furthermore, we show that the bioactive sphingolipids are vimentin network regulators. Specifically, the sphingolipids induced RhoA kinasedependent (ROCK) phosphorylation at vimentin S71, which lead to filament reorganisation and inhibition of cell migration. Together these studies shed new light into the regulation of nestin and vimentin during cell motility.
Resumo:
The integrin family of transmembrane receptors are important for cell-matrix adhesion and signal transmission to the interior of the cell. Integrins are essential for many physiological processes and defective integrin function can consequently result in a multitude of diseases, including cancer. Integrin traffic is needed for completion of cytokinesis and cell division failure has been proposed to be an early event in the formation of chromosomally aberrant and transformed cells. Impaired integrin traffic and changes in integrin expression are known to promote invasion of malignant cells. However, the direct roles of impaired integrin traffic in tumorigenesis and increased integrin expression in oncogene driven invasion have not been examined. In this study we have investigated both of these aspects. We found that cells with reduced integrin endocytosis become binucleate and subsequently aneuploid. These aneuploid cells display characteristics of transformed cells; they are anchorage-independent, resistant to apoptosis and invasive in vitro. Importantly, subcutaneous injection of the aneuploid cells into athymic nude mice produced highly malignant tumors. Through gene expression profiling and analysis of integrin-triggered signaling pathways we have identified several molecules involved in the malignancy of these cells, including Src kinase and the transcription factor Twist2. Thus, even though chromosomal aberrations are associated with reduced cell fitness, we show that aneuploidy can facilitate tumor evolution and selection of transformed cells. Invasion and metastasis are the primary reason for deaths caused by cancer and the molecular pathways responsible for invasion are therefore attractive targets in cancer therapy. In addition to integrins, another major family of adhesion receptors are the proteoglycans syndecans. Integrins and syndecans are known to signal in a synergistic manner in controlling cell adhesion on 2D matrixes. Here we explored the role of syndecans as α2β1 integrin co-receptors in 3D collagen. We show that in breast cancer cells harbouring mutant K-Ras, increased levels of integrins, their co-receptors syndecans and matrix cleaving proteases are necessary for the invasive phenotype of these cells. Together, these findings increase our knowledge of the complicated changes that occur during tumorigenesis and the pathways that control the ability of cancer cells to invade and metastasize.
Resumo:
The three alpha2-adrenoceptor (alpha2-AR) subtypes belong to the G protein-coupled receptor superfamily and represent potential drug targets. These receptors have many vital physiological functions, but their actions are complex and often oppose each other. Current research is therefore driven towards discovering drugs that selectively interact with a specific subtype. Cell model systems can be used to evaluate a chemical compound's activity in complex biological systems. The aim of this thesis was to optimize and validate cell-based model systems and assays to investigate alpha2-ARs as drug targets. The use of immortalized cell lines as model systems is firmly established but poses several problems, since the protein of interest is expressed in a foreign environment, and thus essential components of receptor regulation or signaling cascades might be missing. Careful cell model validation is thus required; this was exemplified by three different approaches. In cells heterologously expressing alpha2A-ARs, it was noted that the transfection technique affected the test outcome; false negative adenylyl cyclase test results were produced unless a cell population expressing receptors in a homogenous fashion was used. Recombinant alpha2C-ARs in non-neuronal cells were retained inside the cells, and not expressed in the cell membrane, complicating investigation of this receptor subtype. Receptor expression enhancing proteins (REEPs) were found to be neuronalspecific adapter proteins that regulate the processing of the alpha2C-AR, resulting in an increased level of total receptor expression. Current trends call for the use of primary cells endogenously expressing the receptor of interest; therefore, primary human vascular smooth muscle cells (SMC) expressing alpha2-ARs were tested in a functional assay monitoring contractility with a myosin light chain phosphorylation assay. However, these cells were not compatible with this assay due to the loss of differentiation. A rat aortic SMC cell line transfected to express the human alpha2B-AR was adapted for the assay, and it was found that the alpha2-AR agonist, dexmedetomidine, evoked myosin light chain phosphorylation in this model.
Resumo:
Roles of novel biomarkers was studied in progression of cutaneous squamous cell carcinoma (cSCC) as the most common metastatic skin cancer. The incidence of cSCC is increasing worldwide due to lifestyle changes such as recreational exposure to sunlight and the aging of the population. Because of an emerging need for molecular markers for the progression of cSCC, we set our goal to characterize three distinct novel markers overexpressed in cSCC cells. Our results identified overexpression of serpin peptidase inhibitor clade A member 1 (SerpinA1), EphB2 and absent in melanoma 2 (AIM2) in cSCC cell lines compared with normal human epidermal keratinocytes (NHEKs). Immunohistochemical analysis of SerpinA1, EphB2 and AIM2 revealed abundant tumor cell-specific expression of cytoplasmic SerpinA1 and AIM2 and cytoplasmic and membranous EphB2 in cSCC tumors in vivo. The staining intensity of SerpinA1, EphB2 and AIM2 was significantly stronger in cSCC as compared with carcinoma in situ (cSCCIS) and actinic keratosis (AK). Tumor cell-associated SerpinA1 and EphB2 was noted in chemically induced mouse skin SCC, and the staining intensity was stronger in mouse cSCCs than in untreated skin. AIM2 staining intensity was significantly more abundant in cSCC of organ transplant recipients (OTR) than in sporadic cSCC in vivo. EphB2 knockdown resulted in inhibition of migration in cSCC cells. In addition, knockdown of EphB2 and AIM2 was found to inhibit the proliferation and invasion of cSCC cells and to delay the growth and vascularization of cSCC xenografts in vivo. Altogether, these findings identify SerpinA1 as a novel biomarker for cSCC. In addition, characterization of the roles of EphB2 and AIM2 in the progression of cSCC was implicated them as possible therapeutic targets for the treatment of cSCC particularly in unresectable and metastatic tumors.
Resumo:
The microenvironment within the tumor plays a central role in cellular signaling. Rapidly proliferating cancer cells need building blocks for structures as well as nutrients and oxygen for energy production. In normal tissue, the vasculature effectively transports oxygen, nutrient and waste products, and maintains physiological pH. Within a tumor however, the vasculature is rarely sufficient for the needs of tumor cells. This causes the tumor to suffer from lack of oxygen (hypoxia) and nutrients as well as acidification, as the glycolytic end product lactate is accumulated. Cancer cells harbor mutations enabling survival in the rough microenvironment. One of the best characterized mutations is the inactivation of the von Hippel-Lindau protein (pVHL) in clear cell renal cell carcinoma (ccRCC). Inactivation causes constitutive activation of hypoxia-inducible factor HIF which is an important survival factor regulating glycolysis, neovascularization and apoptosis. HIFs are normally regulated by HIF prolyl hydroxylases (PHDs), which in the presence of oxygen target HIF α-subunit to ubiquitination by pVHL and degradation by proteasomes. In my thesis work, I studied the role of PHDs in the survival of carcinoma cells in hypoxia. My work revealed an essential role of PHD1 and PHD3 in cell cycle regulation through two cyclin-dependent kinase inhibitors (CKIs) p21 and p27. Depletion of PHD1 or PHD3 caused a cell cycle arrest and subjected the carcinoma cells to stress and impaired the survival.