14 resultados para Heterophagy and apoptosis
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Selective development of human T helper (Th) cells into functionally distinct Th1 and Th2 subtypes plays an essential role in the host immune response towards pathogens. However, abnormal function or differentiation of these cells can lead to development of various autoimmune diseases as well as asthma and allergy. Therefore, identification of key factors and the molecular mechanisms mediating Th1 and Th2 cell differentiation is important for understanding the molecular mechanisms of these diseases. The goal of this study was to identify novel factors involved in the regulation of Th1 and Th2 differentiation processes. A new method was optimized for enrichment of transiently transfected resting human primary T lymphocytes, that allowed the study of the influence of genes of interest in human Th1/Th2 cell differentiation and other primary Th cell functions. Functional characterization of PRELI, a novel activation-induced protein in human Th cells, identified it as a mitochondrial protein involved in the regulation of Th cell differentiation and apoptosis. By influencing the intracellular redox state, PRELI induces mitochondrial apoptosis pathway and downregulates STAT6 and Th2 differentiation. The data suggested that Calpain, an oxidative stress induced cysteine protease, is involved as a mediator in PRELI-induced downregulation of STAT6. PIM serine/threonine-specific kinases were identified as new regulators of human Th1 cell differentiation. PIM1 and PIM2 kinases were shown to be preferentially expressed in Th1 cells as compared to Th2 cells. RNA interference studies showed that PIM kinases enhance the production of IFN, the hallmark cytokine produced by Th1 cells. They also induce the expression of the key Th1-driving factor T-bet and the IL-12 signaling pathway during early phases of Th1 cell differentiation. Taken together, new regulators of human T helper cell differentiation were identified in this study, which provides new insights into the signaling mechanisms controlling the selective activation of human Th cell subsets.
Resumo:
Cells of epithelial origin, e.g. from breast and prostate cancers, effectively differentiate into complex multicellular structures when cultured in three-dimensions (3D) instead of conventional two-dimensional (2D) adherent surfaces. The spectrum of different organotypic morphologies is highly dependent on the culture environment that can be either non-adherent or scaffold-based. When embedded in physiological extracellular matrices (ECMs), such as laminin-rich basement membrane extracts, normal epithelial cells differentiate into acinar spheroids reminiscent of glandular ductal structures. Transformed cancer cells, in contrast, typically fail to undergo acinar morphogenic patterns, forming poorly differentiated or invasive multicellular structures. The 3D cancer spheroids are widely accepted to better recapitulate various tumorigenic processes and drug responses. So far, however, 3D models have been employed predominantly in the Academia, whereas the pharmaceutical industry has yet to adopt a more widely and routine use. This is mainly due to poor characterisation of cell models, lack of standardised workflows and high throughput cell culture platforms, and the availability of proper readout and quantification tools. In this thesis, a complete workflow has been established entailing well-characterised 3D cell culture models for prostate cancer, a standardised 3D cell culture routine based on high-throughput-ready platform, automated image acquisition with concomitant morphometric image analysis, and data visualisation, in order to enable large-scale high-content screens. Our integrated suite of software and statistical analysis tools were optimised and validated using a comprehensive panel of prostate cancer cell lines and 3D models. The tools quantify multiple key cancer-relevant morphological features, ranging from cancer cell invasion through multicellular differentiation to growth, and detect dynamic changes both in morphology and function, such as cell death and apoptosis, in response to experimental perturbations including RNA interference and small molecule inhibitors. Our panel of cell lines included many non-transformed and most currently available classic prostate cancer cell lines, which were characterised for their morphogenetic properties in 3D laminin-rich ECM. The phenotypes and gene expression profiles were evaluated concerning their relevance for pre-clinical drug discovery, disease modelling and basic research. In addition, a spontaneous model for invasive transformation was discovered, displaying a highdegree of epithelial plasticity. This plasticity is mediated by an abundant bioactive serum lipid, lysophosphatidic acid (LPA), and its receptor LPAR1. The invasive transformation was caused by abrupt cytoskeletal rearrangement through impaired G protein alpha 12/13 and RhoA/ROCK, and mediated by upregulated adenylyl cyclase/cyclic AMP (cAMP)/protein kinase A, and Rac/ PAK pathways. The spontaneous invasion model tangibly exemplifies the biological relevance of organotypic cell culture models. Overall, this thesis work underlines the power of novel morphometric screening tools in drug discovery.
Resumo:
Integrins are heterodimeric, signaling transmembrane adhesion receptors that connect the intracellular actin microfilaments to the extracellular matrix composed of collagens and other matrix molecules. Bidirectional signaling is mediated via drastic conformational changes in integrins. These changes also occur in the integrin αI domains, which are responsible for ligand binding by collagen receptor and leukocyte specific integrins. Like intact integrins, soluble αI domains exist in the closed, low affinity form and in the open, high affinity form, and so it is possible to use isolated αI domains to study the factors and mechanisms involved in integrin activation/deactivation. Integrins are found in all mammalian tissues and cells, where they play crucial roles in growth, migration, defense mechanisms and apoptosis. Integrins are involved in many human diseases, such as inflammatory, cardiovascular and metastatic diseases, and so plenty of effort has been invested into developing integrin specific drugs. Humans have 24 different integrins, four of which are collagen receptor (α1β1, α2β1, α10β1, α11β1) and five leukocyte specific integrins (αLβ2, αMβ2, αXβ2, αDβ2, αEβ7). These two integrin groups are quite unselective having both primary and secondary ligands. This work presents the first systematic studies performed on these integrin groups to find out how integrin activation affects ligand binding and selectivity. These kinds of studies are important not only for understanding the partially overlapping functions of integrins, but also for drug development. In general, our results indicated that selectivity in ligand recognition is greatly reduced upon integrin activation. Interestingly, in some cases the ligand binding properties of integrins have been shown to be cell type specific. The reason for this is not known, but our observations suggest that cell types with a higher integrin activation state have lower ligand selectivity, and vice versa. Furthermore, we solved the three-dimensional structure for the activated form of the collagen receptor α1I domain. This structure revealed a novel intermediate conformation not previously seen with any other integrin αI domain. This is the first 3D structure for an activated collagen receptor αI domain without ligand. Based on the differences between the open and closed conformation of the αI domain we set structural criteria for a search for effective collagen receptor drugs. By docking a large number of molecules into the closed conformation of the α2I domain we discovered two polyketides, which best fulfilled the set structural criteria, and by cell adhesion studies we showed them to be specific inhibitors of the collagen receptor integrins.
Resumo:
Cyanobacteria are unicellular, non-nitrogen-fixing prokaryotes, which perform photosynthesis similarly as higher plants. The cyanobacterium Synechocystis sp. strain PCC 6803 is used as a model organism in photosynthesis research. My research described herein aims at understanding the function of the photosynthetic machinery and how it responds to changes in the environment. Detailed knowledge of the regulation of photosynthesis in cyanobacteria can be utilized for biotechnological purposes, for example in the harnessing of solar energy for biofuel production. In photosynthesis, iron participates in electron transfer. Here, we focused on iron transport in Synechocystis sp. strain PCC 6803 and particularly on the environmental regulation of the genes encoding the FutA2BC ferric iron transporter, which belongs to the ABC transporter family. A homology model built for the ATP-binding subunit FutC indicates that it has a functional ATPbinding site as well as conserved interactions with the channel-forming subunit FutB in the transporter complex. Polyamines are important for the cell proliferation, differentiation and apoptosis in prokaryotic and eukaryotic cells. In plants, polyamines have special roles in stress response and in plant survival. The polyamine metabolism in cyanobacteria in response to environmental stress is of interest in research on stress tolerance of higher plants. In this thesis, the potd gene encoding an polyamine transporter subunit from Synechocystis sp. strain PCC 6803 was characterized for the first time. A homology model built for PotD protein indicated that it has capability of binding polyamines, with the preference for spermidine. Furthermore, in order to investigate the structural features of the substrate specificity, polyamines were docked into the binding site. Spermidine was positioned very similarly in Synechocystis PotD as in the template structure and had most favorable interactions of the docked polyamines. Based on the homology model, experimental work was conducted, which confirmed the binding preference. Flavodiiron proteins (Flv) are enzymes, which protect the cell against toxicity of oxygen and/or nitric oxide by reduction. In this thesis, we present a novel type of photoprotection mechanism in cyanobacteria by the heterodimer of Flv2/Flv4. The constructed homology model of Flv2/Flv4 suggests a functional heterodimer capable of rapid electron transfer. The unknown protein sll0218, encoded by the flv2-flv4 operon, is assumed to facilitate the interaction of the Flv2/Flv4 heterodimer and energy transfer between the phycobilisome and PSII. Flv2/Flv4 provides an alternative electron transfer pathway and functions as an electron sink in PSII electron transfer.
Resumo:
Biofilms are surface-attached multispecies microbial communities that are embedded by their self-produced extracellular polymeric substances. This lifestyle enhances the survival of the bacteria and plays a major role in many chronic bacterial infections. For instance, periodontitis is initiated by multispecies biofilms. The phases of active periodontal tissue destruction and notably increased levels of proinflammatory mediators, such as the key inflammatory mediator interleukin (IL)-1beta, are typical of the disease. The opportunistic periodontal pathogen Aggregatibacter actinomycetemcomitans is usually abundant at sites of aggressive periodontitis. Despite potent host immune system responses to subgingival invaders, A. actinomycetemcomitans is able to resist clearance attempts. Moreover, some strains of A. actinomycetemcomitans can generate genetic diversity through natural transformation, which may improve the species’ adjustment tothe subgingival environment in the long term. Some biofilm forming species are known to bind and sense human cytokines. As a response to cytokines, bacteria may increase biofilm formation and alter their expression of virulence genes. Specific outer membrane receptors for interferon-γ or IL-1β have been characterised in two Gram-negative pathogens. Because little is known about periodontal pathogens’ ability to sense cytokines, we used A. actinomycetemcomitans as a model organism to investigate how the species responds to IL-1beta. The main aims of this thesis were to explore cytokine binding on single-species A. actinomycetemcomitans biofilms and to determine the effects of cytokines on the biofilm formation and metabolic activity of the species. Additionally, the cytokine’s putative internalisation and interaction with A. actinomycetemcomitans proteins were studied. The possible impact of biofilm IL-1beta sequestering on the proliferation and apoptosis of gingival keratinocyte cells was evaluated in an organotypic mucosa co-culture model. Finally, the role of the extramembranous domain of the outer membrane protein HofQ (emHofQ) in DNA binding linked to DNA uptake in A. actinomycetemcomitans was examined. Our main finding revealed that viable A. actinomycetemcomitans biofilms can bind and take up the IL-1β produced by gingival cells. At the sites of pathogen-host interaction, the proliferation and apoptosis of gingival keratinocytes decreased slightly. Notably, the exposure of biofilms to IL-1beta caused their metabolic activity to drop, which may be linked to the observed interaction of IL-1beta with the conserved intracellular proteins DNA binding protein HU and the trimeric form of ATP synthase subunit beta. A Pasteurellaceaespecific lipoprotein, which had no previously determined function, was characterized as an IL-1beta interacting membrane protein that was expressed in the biofilm cultures of all tested A. actinomycetemcomitans strains. The use of a subcellular localisation tool combined with experimental analyses suggested that the identified lipoprotein, bacterial interleukin receptor I (BilRI), may be associated with the outer membrane with a portion of the protein oriented towards the external milieu. The results of the emHofQ study indicated that emHofQ has both the structural and functional capability to bind DNA. This result implies that emHofQ plays a role in DNA assimilation. The results from the current study also demonstrate that the Gram-negative oral species appears to sense the central proinflammatory mediator IL-1beta.
Resumo:
ErbB receptor tyrosine kinases, epidermal growth factor receptor (EGFR, also known as ErbB1), ErbB2 (HER2 or NEU), ErbB3 (HER3), and ErbB4 (HER4), transduce signals borne by extracellular ligands into central cellular responses such as proliferation, survival, differentiation, and apoptosis. Mutations in ERBB genes are frequently detected in human malignant diseases of epithelial and neural origin, making ErbB receptors important drug targets. Targeting EGFR and ErbB2 has been successful in eg. lung and breast cancer, respectively, and mutations in these genes can be used to select patients that are responsive to the targeted treatment. Although somatic ERBB4 mutations have been found in many high-incidence cancers such as melanoma, lung cancer, and colorectal cancer and germ-line ERBB4 mutations have been linked to neuronal disorders and cancer, ErbB4 has generally been neglected as a potential drug target. Thus, the consequences of ERBB4 mutations on ErbB4 biology are largely unknown. This thesis aimed to elucidate the functional consequences and assess the clinical significance of somatic and germ-line ERBB4 mutations in the context of cancer and amyotrophic lateral sclerosis. The results of this study indicated that cancer-associated ERBB4 mutations can promote aberrant ErbB4 function by activating the receptor or inducing qualitative changes in ErbB4 signaling. ERBB4 mutations increased survival or decreased differentiation in vitro, suggesting that ERBB4 mutations can be oncogenic. Importantly, the potentially oncogenic mutations were located in various subdomains in ErbB4, possibly providing explanation for the characteristic scattered pattern of mutations in ERBB4. This study also demonstrated that hereditary variation in ERBB4 gene can have a significant effect on the prognosis of breast cancer. In addition, it was shown that hereditary or de novo germ-line ERBB4 mutations that predispose to amyotrophic lateral sclerosis inhibit ErbB4 activity. Together, these results suggest that ErbB4 should be considered as a novel drug target in cancer and amyotrophic lateral sclerosis.
Resumo:
y+LAT1 is a transmembrane protein that, together with the 4F2hc cell surface antigen, forms a transporter for cationic amino acids in the basolateral plasma membrane of epithelial cells. It is mainly expressed in the kidney and small intestine, and to a lesser extent in other tissues, such as the placenta and immunoactive cells. Mutations in y+LAT1 lead to a defect of the y+LAT1/4F2hc transporter, which impairs intestinal absorbance and renal reabsorbance of lysine, arginine and ornithine, causing lysinuric protein intolerance (LPI), a rare, recessively inherited aminoaciduria with severe multi-organ complications. This thesis examines the consequences of the LPI-causing mutations on two levels, the transporter structure and the Finnish patients’ gene expression profiles. Using fluorescence resonance energy transfer (FRET) confocal microscopy, optimised for this work, the subunit dimerisation was discovered to be a primary phenomenon occurring regardless of mutations in y+LAT1. In flow cytometric and confocal microscopic FRET analyses, the y+LAT1 molecules exhibit a strong tendency for homodimerisation both in the presence and absence of 4F2hc, suggesting a heterotetramer for the transporter’s functional form. Gene expression analysis of the Finnish patients, clinically variable but homogenic for the LPI-causing mutation in SLC7A7, revealed 926 differentially-expressed genes and a disturbance of the amino acid homeostasis affecting several transporters. However, despite the expression changes in individual patients, no overall compensatory effect of y+LAT2, the sister y+L transporter, was detected. The functional annotations of the altered genes included biological processes such as inflammatory response, immune system processes and apoptosis, indicating a strong immunological involvement for LPI.
Resumo:
Disorders of male reproductive health are becoming increasingly prevalent globally. These defects, ranging from decreasing sperm counts to an increasing rate of infertility and testicular cancer, have a common origin in the early phases of testicular development, but the exact mechanisms that cause them remain unknown. Testicular development and adult spermatogenesis are complex processes in which different cell types undergo mitosis, meiosis, differentiation and apoptosis. The retinoblastoma protein family and its associated E2F transcription factors are key regulators of these cellular events. In the present study, the functions of these factors in postnatal testicular development and adult spermatogenesis were explored using different animal models. In addition, a new application of flow cytometry to study testicular cell dynamics was developed. An ablation of retinoblastoma protein in mouse Sertoli cells resulted in their cell cycle re-entry in adult testes, dedifferentiation and a severe spermatogenic defect. We showed that deregulated E2F3 contributed to these changes. Our results indicated that the E2F1 transcription factor is critical for the control of apoptosis in the developing postnatal testis. In the adult testis, E2F1 controls the maintenance of the spermatogonial stem cell pool, in addition to inhibiting apoptosis of spermatocytes. In summary, this study elucidated the complex interdependencies of the RB and E2F transcription factor families in the control of postnatal testicular development and adult spermatogenesis. Furthermore, this study provided a new methodology for the analysis of testicular cells.
Resumo:
Lysinuric protein intolerance (LPI) is a recessively inherited disorder characterised by reduced plasma and increased urinary levels of cationic amino acids (CAAs), protein malnutrition, growth failure and hyperlipidemia. Some patients develop severe immunological, renal and pulmonary complications. All Finnish patients share the same LPIFin mutation in the SLC7A7 gene that encodes CAA transporter y+LAT1. The aim of this study was to examine molecular factors contributing to the various symptoms, systemic metabolic and lipid profiles, and innate immune responses in LPI. The transcriptomes, metabolomes and lipidomes were analysed in whole-blood cells and plasma using RNA microarrays and gas or liquid chromatography-mass spectrometry techniques, respectively. Toll-like receptor (TLR) signalling in monocyte-derived macrophages exposed to pathogens was scrutinised using qRT-PCR and the Luminex technology. Altered levels of transcripts participating in amino acid transport, immune responses, apoptosis and pathways of hepatic and renal metabolism were identified in the LPI whole-blood cells. The patients had increased non-essential amino acid, triacylglycerol and fatty acid levels, and decreased plasma levels of phosphatidylcholines and practically all essential amino acids. In addition, elevated plasma levels of eight metabolites, long-chain triacylglycerols, two chemoattractant chemokines and nitric oxide correlated with the reduced glomerular function in the patients with kidney disease. Accordingly, it can be hypothesised that the patients have increased autophagy, inflammation, oxidative stress and apoptosis, leading to hepatic steatosis, uremic toxicity and altered intestinal microbe metabolism. Furthermore, the LPI macrophages showed disruption in the TLR2/1, TLR4 and TLR9 pathways, suggesting innate immune dysfunctions with an excessive response to bacterial infections but a deficient viral DNA response.
Resumo:
Proteins of the Ras family are central regulators of crucial cellular processes, such as proliferation, differentiation and apoptosis. Their importance is emphasized in cancer, in which the isoforms H-ras, N-ras and K-ras are misregulated by mutations in approximately 20 – 30 % of cases. Thus, they represent major cancer oncogenes and one of the most important targets for cancer drug development. Ras proteins are small GTPases, which cycle between the GTP-bound active and GDP-bound inactive state. Despite the tremendous research conducted in the last three decades, many fundamental properties of Ras proteins remain poorly understood. For instance, although new concepts have recently emerged, the understanding of Ras behavior in its native environment, the membrane, is still largely missing. On the membrane Ras organizes into nanoscale clusters, also called nanoclusters. They differ between isoforms, but also between activation states of Ras. It is considered that nanoclusters represent the basic Ras signaling units. Recently, it was demonstrated that on the membrane Ras adopts distinct conformations, the so-called orientations, which are dependent on the Ras activations state. The membrane-orientation of H-ras is stabilized by the helix α4 and the C-terminal hypervariable region (hvr). The novel switch III region was proposed to be involved in mediating the change between different H-ras orientations. When the regions involved in this mechanism are mutated, H-ras activity is changed by an unknown mechanism. This thesis has explained the connection between the change of Ras orientation on the membrane and Ras activity. We demonstrated that H-ras orientation mutants exhibit altered diffusion properties on the membrane, which reflect the changes in their nanoclustering. The altered nanoclustering consequently rules the activity of the mutants. Moreover, we demonstrated that specific cancer-related mutations, affecting the switch III region of different Ras isoforms, exhibit increased nanoclustering, which consequently leads to stronger Ras signaling and tumorigenicity. Thus, we have discovered nanoclustering increase as a novel mechanism of Ras activity modulation in cancer. The molecular architecture of complexes formed on the membrane upon Ras activation is another poorly understood property of Ras. The following work has provided novel details on the regulation of Ras nanoclustering by a known H-ras-GTP nanoclustering stabilizer galectin-1 (Gal-1). Our study demonstrated that Gal-1 is not able to bind Ras directly, as it was previously proposed. Instead, its effect on H-ras-GTP nanoclustering is indirect, through binding of the effector proteins. Collectively, our findings represent valuable novel insights in the behavior of Ras, which will help the future research to eventually develop new strategies to successfully target Ras in cancer.
Resumo:
The microenvironment within the tumor plays a central role in cellular signaling. Rapidly proliferating cancer cells need building blocks for structures as well as nutrients and oxygen for energy production. In normal tissue, the vasculature effectively transports oxygen, nutrient and waste products, and maintains physiological pH. Within a tumor however, the vasculature is rarely sufficient for the needs of tumor cells. This causes the tumor to suffer from lack of oxygen (hypoxia) and nutrients as well as acidification, as the glycolytic end product lactate is accumulated. Cancer cells harbor mutations enabling survival in the rough microenvironment. One of the best characterized mutations is the inactivation of the von Hippel-Lindau protein (pVHL) in clear cell renal cell carcinoma (ccRCC). Inactivation causes constitutive activation of hypoxia-inducible factor HIF which is an important survival factor regulating glycolysis, neovascularization and apoptosis. HIFs are normally regulated by HIF prolyl hydroxylases (PHDs), which in the presence of oxygen target HIF α-subunit to ubiquitination by pVHL and degradation by proteasomes. In my thesis work, I studied the role of PHDs in the survival of carcinoma cells in hypoxia. My work revealed an essential role of PHD1 and PHD3 in cell cycle regulation through two cyclin-dependent kinase inhibitors (CKIs) p21 and p27. Depletion of PHD1 or PHD3 caused a cell cycle arrest and subjected the carcinoma cells to stress and impaired the survival.
Resumo:
The aim of this study was to investigate herpes simplex virus type 1 (HSV-1)- and measles virus (MV)-induced cell death. HSV-1 with deletion in genes encoding infected cell protein (ICP)4 and protein kinase Us3 (d120) induced apoptosis and cathepsin activation in epithelial (HEp-2) and monocytic (U937) cells. Inhibition of cathepsin activity decreased the amount of d120-induced apoptosis indicating that d120-induced apoptosis could be cathepsin-mediated. Also, HSV-1 infection increased caspase activation suggesting that d120-induced apoptosis is probably caspase-mediated. Cystatin treatment decreased the activity of cathepsins and the replication of HSV-1 indicating that cathepsins contribute to HSV-1 infection. Interestingly, d120 induced also necroptosis in monocytic cells. This is the first report on necroptosis in HSV-1- infected cells. MV induced apoptosis in uninfected bystander T lymphocytes, probably via interaction of MV-infected monocytes with uninfected lymphocytes. The expression of death receptor Fas was clearly increased on the surface of lymphocytes. The number of apoptotic cells and the activation of cathepsins and caspases were increased in MVinfected U937 cells suggesting that MV-induced apoptosis could be cathepsin- and caspase-mediated. Cystatin treatment inhibited cathepsin activities but not MV-induced apoptosis. Besides HSV-1-induced apoptosis, innate immune responses were studied in HSV-1-infection. HSV-1 viruses with either ICP4 and Us3, or Us3 deletion only, increased the expression of Toll-like receptor (TLR)3 and stimulated its downstream pathways leading to increased expression of type I interferon gene and to functional interferons. These findings suggest that besides controlling apoptosis, HSV-1 ICP4 and Us3 genes are involved in the control of TLR3 response in infected cell.
Resumo:
Stressignaler avkänns många gånger av membranbundna proteiner som översätter signalerna till kemisk modifiering av molekyler, ofta proteinkinaser Dessa kinaser överför de avkodade budskapen till specifika transkriptionsfaktorer genom en kaskad av sekventiella fosforyleringshändelser, transkriptionsfaktorerna aktiverar i sin tur de gener som behövs för att reagera på stressen. En av de mest kända måltavlorna för stressignaler är transkriptionsfaktor AP-1 familjemedlemen c-Jun. I denna studie har jag identifierat den nukleolära proteinet AATF som en ny regulator av c-Jun-medierad transkriptionsaktivitet. Jag visar att stresstimuli inducerar omlokalisering av AATF vilket i sin tur leder till aktivering av c-Jun. Den AATF-medierad ökningen av c-Jun-aktiviteten leder till en betydande ökning av programmerad celldöd. Parallellt har jag vidarekarakteriserat Cdk5/p35 signaleringskomplexet som tidigare har identifierats i vårt laboratorium som en viktig faktor för myoblastdifferentiering. Jag identifierade den atypiska PKCξ som en uppströms regulator av Cdk5/p35-komplexet och visar att klyvning och aktivering av Cdk5 regulatorn p35 är av fysiologisk betydelse för differentieringsprocessen och beroende av PKCξ aktivitet. Jag visar att vid induktion av differentiering fosforylerar PKCξ p35 vilket leder till calpain-medierad klyvning av p35 och därmed ökning av Cdk5-aktiviteten. Denna avhandling ökar förståelsen för de regulatoriska mekanismer som styr c-Jun-transkriptionsaktiviteten och c-Jun beroende apoptos genom att identifiera AATF som en viktig faktor. Dessutom ger detta arbete nya insikter om funktionen av Cdk5/p35-komplexet under myoblastdifferentiering och identifierar PKCξ som en uppströms regulator av Cdk5 aktivitet och myoblast differentiering.