7 resultados para Givens rotations
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Diplomityön tutkimusfunktio käsittelee toimeksiantajan, Stora Enso Timber Oy Ltd Kotkan sahan, sahalinjan optimointikokonaisuuden relevanttia ongelmakenttää. Tutkimuksen alussa profiloivan sahalinjan tukinpyörityksen, pelkan sivuttaissiirron tai sivulautaoptimoinnin toimivuudesta ei ollut varmuutta. Työn painopistealue on sivulautaoptimointi, jonka toimivuus tutkimuksen alussa on hyvin kyseenalaista tuotantoajossa. Työn tavoitteet kiteytyvät paremman raaka-aineen käyttösuhteen saavuttamiselle, jolloin pitkän aikajänteen kannattavuus on realistisempaa saavuttaa. Kotkan sahalinjan optimointijärjestelmässä on kokonaisuudessaan saavutettu tuotantoajoon hyväksyttävä taso. Tukinpyörityksen tarkkuudessa saavutettiin asetettu tavoite, eli 90 % pyöritystuloksista menee virheikkunaan ± 10° , sekä virheen keskiarvon itseisarvo jasen ympärillä olevan hajonnan summa on maksimissaan 10° . Pelkan sivuttaissiirto todettiin tutkimuksessa sekundääriseksi optimointijärjestelmäksi. Ohjaus perustuu tukkimittarin mittaamaan dataan, jolloin tukinpyörityksen hajonta aiheuttaa epätarkkuutta pelkan suuntauksessa. Pelkan sivuttaisiirron käyttäminen vaatii lisämittauksia, jolloin voidaan varmistua pelkan suuntauksen optimoinnin toimivuudesta. Sivulautaoptimoinnin toimivuuden kehittämisessä saavutettiin se taso, missä todellista kehitystyötä voidaan tehdä. Koeajoissa ja optimointiohjelman tarkastamisessa havaittiin periaatteellisia virheitä, jotka korjattiin. Toimivan sivulautaoptimoinnin myötä on mahdollista hallita paremmin tuotannonohjaus, jolloin tuotanto voidaan etenkin sivulautojen osalta kohdentaa paremmin vastaamaan kysyntää sekä asete-erän hyvää käyttösuhdetta. Raaka-aineen käyttösuhde on parantunut. Yksittäisten asetevertailujen sekä esimerkkilaskelmien perusteella tuottopotentiaali tukinpyörityksen ja sivulautaoptimoinnin osalta on 0,6...1,5 MEUR Välillinen tuottopotentiaali on suurempi, koska tuotantoprosessi sahauksen osalta on erittäin joustava markkinoiden tarpeen muutoksille. Sahalinjalla on mahdollista tuottaa helposti laajalla tukkisumalla laajaa tuotematriisia, jossa sivulautaoptimoinnilla on avainrooli. Tuotannonsuunnittelufunktiota tulee kehittää vastaamaan mahdollisuuksiin,joita sivulautaoptimointi tarjoaa. Tuotematriisi ja sitä vastaavat asetteet lankeavalla tukkisumalla tulee rakentaa uudestaan niiltä osin, joihin sivulautaoptimointi antaa variaatiomahdollisuuksia.
Resumo:
This thesis introduces a real-time simulation environment based on the multibody simulation approach. The environment consists of components that are used in conventional product development, including computer aided drawing, visualization, dynamic simulation and finite element software architecture, data transfer and haptics. These components are combined to perform as a coupled system on one platform. The environment is used to simulate mobile and industrial machines at different stages of a product life time. Consequently, the demands of the simulated scenarios vary. In this thesis, a real-time simulation environment based on the multibody approach is used to study a reel mechanism of a paper machine and a gantry crane. These case systems are used to demonstrate the usability of the real-time simulation environment for fault detection purposes and in the context of a training simulator. In order to describe the dynamical performance of a mobile or industrial machine, the nonlinear equations of motion must be defined. In this thesis, the dynamical behaviour of machines is modelled using the multibody simulation approach. A multibody system may consist of rigid and flexible bodies which are joined using kinematic joint constraints while force components are used to describe the actuators. The strength of multibody dynamics relies upon its ability to describe nonlinearities arising from wearing of the components, friction, large rotations or contact forces in a systematic manner. For this reason, the interfaces between subsystems such as mechanics, hydraulics and control systems of the mechatronic machine can be defined and analyzed in a straightforward manner.
Resumo:
The focus of this dissertation is to develop finite elements based on the absolute nodal coordinate formulation. The absolute nodal coordinate formulation is a nonlinear finite element formulation, which is introduced for special requirements in the field of flexible multibody dynamics. In this formulation, a special definition for the rotation of elements is employed to ensure the formulation will not suffer from singularities due to large rotations. The absolute nodal coordinate formulation can be used for analyzing the dynamics of beam, plate and shell type structures. The improvements of the formulation are mainly concentrated towards the description of transverse shear deformation. Additionally, the formulation is verified by using conventional iso-parametric solid finite element and geometrically exact beam theory. Previous claims about especially high eigenfrequencies are studied by introducing beam elements based on the absolute nodal coordinate formulation in the framework of the large rotation vector approach. Additionally, the same high eigenfrequency problem is studied by using constraints for transverse deformation. It was determined that the improvements for shear deformation in the transverse direction lead to clear improvements in computational efficiency. This was especially true when comparative stress must be defined, for example when using elasto-plastic material. Furthermore, the developed plate element can be used to avoid certain numerical problems, such as shear and curvature lockings. In addition, it was shown that when compared to conventional solid elements, or elements based on nonlinear beam theory, elements based on the absolute nodal coordinate formulation do not lead to an especially stiff system for the equations of motion.
Resumo:
Tool center point calibration is a known problem in industrial robotics. The major focus of academic research is to enhance the accuracy and repeatability of next generation robots. However, operators of currently available robots are working within the limits of the robot´s repeatability and require calibration methods suitable for these basic applications. This study was conducted in association with Stresstech Oy, which provides solutions for manufacturing quality control. Their sensor, based on the Barkhausen noise effect, requires accurate positioning. The accuracy requirement admits a tool center point calibration problem if measurements are executed with an industrial robot. Multiple possibilities are available in the market for automatic tool center point calibration. Manufacturers provide customized calibrators to most robot types and tools. With the handmade sensors and multiple robot types that Stresstech uses, this would require great deal of labor. This thesis introduces a calibration method that is suitable for all robots which have two digital input ports free. It functions with the traditional method of using a light barrier to detect the tool in the robot coordinate system. However, this method utilizes two parallel light barriers to simultaneously measure and detect the center axis of the tool. Rotations about two axes are defined with the center axis. The last rotation about the Z-axis is calculated for tools that have different width of X- and Y-axes. The results indicate that this method is suitable for calibrating the geometric tool center point of a Barkhausen noise sensor. In the repeatability tests, a standard deviation inside robot repeatability was acquired. The Barkhausen noise signal was also evaluated after recalibration and the results indicate correct calibration. However, future studies should be conducted using a more accurate manipulator, since the method employs the robot itself as a measuring device.
Resumo:
The absolute nodal coordinate formulation was originally developed for the analysis of structures undergoing large rotations and deformations. This dissertation proposes several enhancements to the absolute nodal coordinate formulation based finite beam and plate elements. The main scientific contribution of this thesis relies on the development of elements based on the absolute nodal coordinate formulation that do not suffer from commonly known numerical locking phenomena. These elements can be used in the future in a number of practical applications, for example, analysis of biomechanical soft tissues. This study presents several higher-order Euler–Bernoulli beam elements, a simple method to alleviate Poisson’s and transverse shear locking in gradient deficient plate elements, and a nearly locking free gradient deficient plate element. The absolute nodal coordinate formulation based gradient deficient plate elements developed in this dissertation describe most of the common numerical locking phenomena encountered in the formulation of a continuum mechanics based description of elastic energy. Thus, with these fairly straightforwardly formulated elements that are comprised only of the position and transverse direction gradient degrees of freedom, the pathologies and remedies for the numerical locking phenomena are presented in a clear and understandable manner. The analysis of the Euler–Bernoulli beam elements developed in this study show that the choice of higher gradient degrees of freedom as nodal degrees of freedom leads to a smoother strain field. This improves the rate of convergence.
Resumo:
Tässä lisensiaatintyössä käsitellään sekaelementtien sovellusmahdollisuuksia absoluuttisten solmukoordinaattien menetelmässä. Absoluuttisten solmukoordinaattien menetelmä on uudentyyppinen lähestymistapa elementtimenetelmän elementtien koordinaattien määrittämiseksi ja sen yhtenä tavoitteena on tehostaa suuria siirtymiä tai kiertymiä sisältävien elementtien laskentatehokkuutta. Tässä työssä absoluuttisten solmukoordinaattien menetelmä esitellään pääpiirteittäin sekä annetaan esimerkkejä muutamista tyypillisimmistä elementeistä lausuttuna edellä mainittujen koordinaattien perusteella. Sekaelementeiksi kutsutaan elementtityyppejä, missä tuntemattomien muuttujien joukkoja on aina enemmän kuin yksi. Sekaelementit erottavat redusoitumattomista elementeistä siirtymäkentän sisältyminen muuttujaryhmään ja hybridielementeistä muuttujien identtiset ulottuvuudet. Sekaelementtejä käytetään esimerkiksi kokoonpuristumattomien materiaalien rakenneanalyyseissä, alentamaan elementiltä vaadittavia jatkuvuusehtoja tai mallintamaan ilmiöitä, missä fysikaaliset ominaisuudet ovat jostain syystä voimakkaasti toisistaan riippuvaisia. Tämän lisensiaatintyön kirjoittamiseksi on tehty tutkimusta sekaelementtien mahdollisuuksista toimia absoluuttisten solmukoordinaattien menetelmässä. Tutkimuksen tuloksena on saatu aikaan kaksi tässä työssä esiteltävää, varsin rajatun toimintakyvyn omaavaa sekaelementtityyppiä, joiden siirtymäkentät on määritelty globaalien koordinaattien suhteen sisältäen myös orientaatiotermit. Tutkimusaihe vaatii kuitenkin vielä paljon lisätyötä, ennen kuin sekaelementtityyppejä voidaan kauttaaltaan soveltaa absoluuttisten solmukoordinaattien menetelmällä toteutetuissa rakenneanalyyseissä.