10 resultados para Genetic and phenotypic correlation
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
En av naturens mest grundläggande aspekter är den enorma mängd av variation som existerar mellan arter. Denna variation har lett oss till att klassificera olika organismer på basis av morfologiska skillnader och på senare tid till att jämföra genetiska skillnader på individens nivå. Den marina kiselalgen Skeletonema marinoi är en av de vanligaste växtplanktonarter i Östersjön under vårblomningen och anses viktig för den årliga produktionen. En av mina främsta målsättningar var att beskriva den intra-specifika diversiteten hos denna art längs med miljögradienter i Östersjön. Ett annat mål var att klargöra de faktorer som eventuellt är involverade i konfigurationen av genetisk diversitet och differentiering. Med hjälp av genetiska markörer visade jag att den genetiska diversiteten hos S. marinoi populationer i Östersjön är lägre jämfört med populationer i östra delen av Nordsjön. Arten är genetiskt uppdelad så att en utpräglad population förekommer i Östersjön och en annan, genetiskt åtskild population förekommer norr om de Danska sunden. Resultaten visar att de genetiskt åtskilda populationerna är anpassade till lokala salinitetsförhållanden. Genflödet mellan populationerna korrelerade kraftigt med havströmmar i området. Mina studier avslöjade även omfattande variation av fenotypiska, ekologiskt vikitga särdrag hos olika kloner. Djurplankton som äter kiselalger kunde modifiera den klonala mångfalden av fenotypiskt variabla S. marinoi populationer. En ökad klonal mångfald ledde till högre prestationsförmåga i fråga om primär produktion och stabiliserade ekofysiologiska funktioner. Som visas i denna avhandling består en art allt som oftast av åtskilliga genetiska varianter med fenotypiska skillnader. Kunskap om sådana intra-specifika skillnader är en förutsättning för att vi skall kunna förstå var och varför arter förekommer. Denna kunskap utgör även en grund för prognoser som siktar på att förutspå huruvida arter kan anpassa sig till framtida miljöförhållanden. ------------------------------------------------------ Suunnaton määrä variaatioita eliölajien välillä on perustavanlaatuinen ominaisuus luonnossa. Perinteisesti tätä monimuotoisuutta on käytetty organismien luokittelemiseen eri lajeihin niiden morfologisten eroavaisuuksien perusteella. Hiljattain myös geneettisten erojen huomioimista yksilötasolla on hyödynnetty lajien luokittelemisessa. Merialueilla esiintyvä piilevä, Skeletonema marinoi on yksi Itämeren tavallisimmista kasviplanktonlajeista kevätkukinnan aikana. Tavoitteenani oli selventää geneettistä ja fenotyyppistä monimuotoisuutta pitkin Itämeren ympäristögradienttejä. Geneettisen monimuotoisuuteen ja erkaantumiseen vaikuttavien tekijöiden selvittäminen oli tärkeä aspekti väitöstutkimuksessani. Geneettisiä markkereita käyttämällä pystyin toteamaan, että S. marinoi levän geneettinen monimuotoisuus on Itämeressä merkittävästi alhaisempi kuin läheisessä Pohjanmeren itäosassa. Tutkittu laji jakautuu geneettisesti yhteen erilliseen populaatioon Itämeressä ja toiseen selvästi erottuvaan populaatioon Tanskan salmien pohjoispuolella. Kokeellisten tulosten perusteella nämä geneettisesti erilaistuneet populaatiot ovat kumpikin sopeutuneet paikalliseen veden suolapitoisuuteen. Populaatioiden välisen geenivirran ja merivirtojen luoman yhteyden välillä havaittiin vahva korrelaatio. Tutkimukseni paljastivat myös laajaa vaihtelua Skeletonema-kloonien ekologisesti tärkeissä ominaisuuksissa. Kokeellisten tutkimusteni perusteella laiduntajat pystyivät muuttamaan geneettisten kloonien lukumäärää monimuotoisissa S. marinoi populaatioissa. Lisääntynyt kloonien lukumäärä paransi perustuotantokykyä ja vakautti ekofysiologisia toimintoja. Kuten tässä väitöstutkimuksessa osoitetaan, lajit koostuvat useimmiten lukuisista geneettisistä muunnelmista, jotka eroavat usein fenotyypeiltään. Ymmärtääksemme missä tietyt lajit esiintyvät ja miksi, tarvitsemme tietoa lajien sisäisistä vaihteluista. Tämä tieto on tarpeellista, jotta voimme ennustaa lajien sopeutumista tuleviin ympäristönmuutoksiin.
Resumo:
Mitochondria are present in all eukaryotic cells. They enable these cells utilize oxygen in the production of adenosine triphosphate in the oxidative phosphorylation system, the mitochondrial respiratory chain. The concept ‘mitochondrial disease’ conventionally refers to disorders of the respiratory chain that lead to oxidative phosphorylation defect. Mitochondrial disease in humans can present at any age, and practically in any organ system. Mitochondrial disease can be inherited in maternal, autosomal dominant, autosomal recessive, or X-chromosomal fashion. One of the most common molecular etiologies of mitochondrial disease in population is the m.3243A>G mutation in the MT-TL1 gene, encoding mitochondrial tRNALeu(UUR). Clinical evaluation of patients with m.3243A>G has revealed various typical clinical features, such as stroke-like episodes, diabetes mellitus and sensorineural hearing loss. The prevalence and clinical characteristics of mitochondrial disease in population are not well known. This thesis consists of a series of studies, in which the prevalence and characteristics of mitochondrial disease in the adult population of Southwestern Finland were assessed. Mitochondrial haplogroup Uk was associated with increased risk of occipital ischemic stroke among young women. Large-scale mitochondrial DNA deletions and mutations of the POLG1 gene were the most common molecular etiologies of progressive external ophthalmoplegia. Around 1% of diabetes mellitus emerging between the ages 18 – 45 years was associated with the m.3243A>G mutation. Moreover, among these young diabetic patients, mitochondrial haplogroup U was associated with maternal family history of diabetes. These studies demonstrate the usefulness of carefully planned molecular epidemiological investigations in the study of mitochondrial disorders.
Resumo:
Varhaislapsuuden virusinfektioiden, lehmänmaitopohjaisen äidinmaitovastikeen ja geneettisen alttiuden merkitys diabetekseen liittyvän autoimmuniteetin kehittymisessä Tyypin 1 diabetes on autoimmuunisairaus, joka syntyy haiman insuliinia tuottavien beta-solujen tuhouduttua elimistön oman immuunipuolustusjärjestelmän hyökkäyksen seurauksena. Sekä perimän että ympäristötekijöiden arvellaan vaikuttavan tautiprosessiin, mutta taudin tarkkaa syntymekanismia ei tunneta. Tutkimuksen tarkoituksena oli selvittää varhaislapsuuden ympäristötekijöiden vaikutusta beta-soluautoimmuniteetin syntyyn, erityispaino tutkimuksessa oli ympäristötekijöiden yhteisvaikutuksessa sekä geneettisten riskitekijöiden ja ympäristötekijöiden vuorovaikutuksessa. Varhaislapsuudessa sairastettu sytomegalovirus- tai enterovirusinfektio ei lisännyt beta-soluautoimmuniteetin riskiä lapsilla, joilla on geneettisesti kohonnut riski sairastua tyypin 1 diabetekseen. Ennen puolen vuoden ikää sairastettu rotavirusinfektio lisäsi hieman tyypin 1 diabetekseen liittyvän autoimmuniteetin riskiä. Tarkemmassa analyysissa varhaislapsuuden enterovirusinfektio osoittautui kuitenkin autovasta-aineiden muodostumisen riskitekijäksi niiden lasten joukossa, jotka olivat saaneet lehmänmaitopohjaista äidinmaidon vastiketta ensimmäisten elinkuukausien aikana. Tämä löydös viittaa enterovirusinfektion ja lehmänmaitopohjaisen vastikkeen yhteisvaikutukseen tyypin 1 diabetekseen liittyvän autoimmuniteetin synnyssä. Löydösten mukaan PTPN22 geenin C1858T polymorfismi vaikuttaa CD4+ T solujen aktivaatioon ja proliferaatiovasteeseen, 1858T alleeliin liittyy alentunut T-soluresepto-rivälitteinen aktivaatio. 1858T alleelin kantajuuteen liittyy lisäksi lisääntynyt autovasta-aineiden ja kliinisen diabeteksen ilmaantuvuus. Tämä yhteys rajoittui yksilöihin, jotka olivat altistuneet lehmänmaitopohjaiselle vastikkeelle ennen kuuden kuukauden ikää. Tulosten mukaan sekä ympäristötekijöiden väliset yhteisvaikutukset että perimä vaikuttavat yksittäisen ympäristötekijän merkitykseen tyypin 1 diabetekseen liittyvän autoimmuniteetin synnyssä. Nämä yhteisvaikutukset ympäristötekijöiden kesken ja perimän ja ympäristötekijöiden välillä selittävät aiemmin julkaistujen tulosten ristiriittaisuutta tutkimuksissa, joissa on analysoitu vain yhden ympäristötekijän vaikutusta diabeteksen ilmaantuvuuteen.
Resumo:
The overall purpose of this thesis was to increase the knowledge on the biogeochemistry of rural acid sulphate (AS) soil environments and urban forest ecosystems near small towns in Western Finland. In addition, the potential causal relationship between the distribution of AS soils and geographical occurence of multiple sclerosis (MS) disease was assessed based on a review of existing literature and data. Acid sulphate soils, which occupy an area of approximately 17–24 million hectare worldwide, are regarded as the nastiest soils in the world. Independent of the geographical locality of these soils, they pose a great threat to their surrounding environment if disturbed. The abundant metal-rich acid drainage from Finnish AS soils, which is a result of sulphide oxidation due to artificial farmland drainage, has significant but spatially and temporally variable ecotoxicological impacts on biodiversity and community structure of fish, benthic invertebrates and macrophytes. This has resulted in mass fish kills and even eradication of sensitive fish species in affected waters. Moreover, previous investigations demonstrated significantly enriched concentrations of Co, Ni, Mn and Al, metals which are abundantly mobilised in AS soils, in agricultural crops (timothy grass and oats) and approximately 50 times higher concentrations of Al in cow milk originating from AS soils in Western Finland. Nevertheless, the results presented here demonstrate, in general, relatively moderate metal concentrations in oats and cabbage grown on AS soils in Western Finland, although some of the studied fields showed anomalous values of metals (e.g. Co and Ni) in both the soil and target plants (especially oats), similar to that of the previous investigations. The results indicated that the concentrations of Co, Ni, Mn and Zn in oats and Co and Zn in cabbage were governed by soil geochemistry as these metals were correlated with corresponding concentrations extracted from the soil by NH4Ac-EDTA and NH4Ac, respectively. The concentrations of Cu and Fe in oats and cabbage were uncorrelated to that of the easily soluble concentrations in the soils, suggesting that biological processes (e.g. plant-root processes) overshadow geochemical variation. The concentrations of K and Mg in cabbage, which showed a low spread and were strongly correlated to the NH4Ac extractable contents in the soil, were governed by both the bioavailable fractions in the topsoil and plant-uptake mechanisms. The plant´s ability to regulate its uptake of Ca and P (e.g. through root exudates) seemed to be more important than the influence of soil geochemistry. The distribution of P, K, Ca, Mg, Mn and S within humus, moss and needles in and around small towns was to a high degree controlled by biological cycling, which was indicated by the low correlation coefficients for P, K, Ca, Mg and S between humus and moss, and the low spread of these nutrients in moss and needles. The concentration variations of elements in till are mainly due to natural processes (e.g. intrusions, weathering, mineralogical variations in the bedrock). There was a strong spatial pattern for B in humus, moss and needles, which was suggested to be associated with anthropogenic emissions from nearby town centres. Geogenic dust affected the spatial distribution of Fe and Cr in moss, while natural processes governed the Fe anomaly found in the needles. The spatial accumulation patterns of Zn, Cd, Cu, Ni and Pb in humus and moss were strong and diverse, and related to current industry, the former steel industry, coal combustion, and natural geochemical processes. An intriguing Cu anomaly was found in moss. Since it was located close to a main railway line and because the railway line´s electric cables are made of Cu, it was suggested that the reason for the Cu anomaly is corrosion of these cables. In Western Finland, where AS soils are particularly abundant and enrich the metal concentrations of stream waters, cow milk and to some extent crops, an environmental risk assessment would be motivated to elucidate if the metal dispersion affect human health. Within this context, a topic of concern is the distribution of multiple sclerosis as high MS prevalence rates are found in the main area of AS soils. Regionally, the AS soil type in the Seinäjoki area has been demonstrated to be very severe in terms of metal leaching, this area also shows one of the highest MS rates reported worldwide. On a local scale, these severe AS soil types coincide well with the corresponding MS clustering along the Kyrönjoki River in Seinäjoki. There are reasons to suspect that these spatial correlations are causal, as multiple sclerosis has been suggested to result from a combination of genetic and environmental factors.
Resumo:
Female sexual dysfunctions, including desire, arousal, orgasm and pain problems, have been shown to be highly prevalent among women around the world. The etiology of these dysfunctions is unclear but associations with health, age, psychological problems, and relationship factors have been identified. Genetic effects explain individual variation in orgasm function to some extent but until now quantitative behavior genetic analyses have not been applied to other sexual functions. In addition, behavior genetics can be applied to exploring the cause of any observed comorbidity between the dysfunctions. Discovering more about the etiology of the dysfunctions may further improve the classification systems which are currently under intense debate. The aims of the present thesis were to evaluate the psychometric properties of a Finnish-language version of a commonly used questionnaire for measuring female sexual function, the Female Sexual Function Index (FSFI), in order to investigate prevalence, comorbidity, and classification, and to explore the balance of genetic and environmental factors in the etiology as well as the associations of a number of biopsychosocial factors with female sexual functions. Female sexual functions were studied through survey methods in a population based sample of Finnish twins and their female siblings. There were two waves of data collection. The first data collection targeted 5,000 female twins aged 33–43 years and the second 7,680 female twins aged 18–33 and their over 18–year-old female siblings (n = 3,983). There was no overlap between the data collections. The combined overall response rate for both data collections was 53% (n = 8,868), with a better response rate in the second (57%) compared to the first (45%). In order to measure female sexual function, the FSFI was used. It includes 19 items which measure female sexual function during the previous four weeks in six subdomains; desire, subjective arousal, lubrication, orgasm, sexual satisfaction, and pain. In line with earlier research in clinical populations, a six factor solution of the Finnish-language version of the FSFI received supported. The internal consistencies of the scales were good to excellent. Some questions about how to avoid overestimating the prevalence of extreme dysfunctions due to women being allocated the score of zero if they had had no sexual activity during the preceding four weeks were raised. The prevalence of female sexual dysfunctions per se ranged from 11% for lubrication dysfunction to 55% for desire dysfunction. The prevalence rates for sexual dysfunction with concomitant sexual distress, in other words, sexual disorders were notably lower ranging from 7% for lubrication disorder to 23% for desire disorder. The comorbidity between the dysfunctions was substantial most notably between arousal and lubrication dysfunction even if these two dysfunctions showed distinct patterns of associations with the other dysfunctions. Genetic influences on individual variation in the six subdomains of FSFI were modest but significant ranging from 3–11% for additive genetic effects and 5–18% for nonadditive genetic effects. The rest of the variation in sexual functions was explained by nonshared environmental influences. A correlated factor model, including additive and nonadditive genetic effects and nonshared environmental effects had the best fit. All in all, every correlation between the genetic factors was significant except between lubrication and pain. All correlations between the nonshared environment factors were significant showing that there is a substantial overlap in genetic and nonshared environmental influences between the dysfunctions. In general, psychological problems, poor satisfaction with the relationship, sexual distress, and poor partner compatibility were associated with more sexual dysfunctions. Age was confounded with relationship length but had over and above relationship length a negative effect on desire and sexual satisfaction and a positive effect on orgasm and pain functions. Alcohol consumption in general was associated with better desire, arousal, lubrication, and orgasm function. Women pregnant with their first child had fewer pain problems than nulliparous nonpregnant women. Multiparous pregnant women had more orgasm problems compared to multiparous nonpregnant women. Having children was associated with less orgasm and pain problems. The conclusions were that desire, subjective arousal, lubrication, orgasm, sexual satisfaction, and pain are separate entities that have distinct associations with a number of different biopsychosocial factors. However, there is also considerable comorbidity between the dysfunctions which are explained by overlap in additive genetic, nonadditive genetic and nonshared environmental influences. Sexual dysfunctions are highly prevalent and are not always associated with sexual distress and this relationship might be moderated by a good relationship and compatibility with partner. Regarding classification, the results supports separate diagnoses for subjective arousal and genital arousal as well as the inclusion of pain under sexual dysfunctions.
Resumo:
Flavobacterium psychrophilum is the etiological agent of bacterial cold-water disease (BCWD) causing high fish mortalities and significant economic losses to the freshwater salmonid aquaculture industry around the world. Today BCWD outbreaks are mainly treated with environmentally hazardous antimicrobial agents and alternative preventative measures are urgently needed in order to ensure the well-being of animals and the sustainability of aquaculture. The diversity of pathogenic bacteria challenges the development of universal control strategies and in many cases the pathogen population structure, i.e. the total genetic diversity of the species must be taken into account. This work integrates the tools of modern molecular biology and conventional phenotypic microbiology to gain knowledge about the diversity and population structure of F. psychrophilum. The present work includes genetic characterization of a large collection of isolates collected from diverse origins and years, from aquaculture in a whole region including different countries, and provides the first international validation of a universal multilocus sequence typing (MLST) approach for unambiguous genetic typing of F. psychrophilum. Population structure analyses showed that the global F. psychrophilum population is subdivided into pathogenic species-specific clones, of which one particular genetic lineage, clonal complex CC-ST2, has been responsible for the majority of BCWD outbreaks in rainbow trout (Oncorhynchus mykiss) in European aquaculture facilities over several decades. Genotypic and phenotypic population heterogeneity affecting antimicrobial resistance in F. psychrophilum within BCWD outbreaks was discovered. Specific genotypes were associated with severe infections in farmed rainbow trout and Atlantic salmon (Salmo salar), and in addition to high adherence, antimicrobial resistance was strongly associated with outbreak strains. The study brought additional support for the hypothesis of an epidemic F. psychrophilum population structure, where recombination is an important force for the generation and maintenance of genetic diversity, and a significant contribution towards mapping the genetic diversity of this important fish pathogen. Evidence indicating dissemination of virulent strains with commercial movement of fish and fish products was strengthened.
Resumo:
Genetic, Prenatal and Postnatal Determinants of Weight Gain and Obesity in Young Children – The STEPS Study University of Turku, Faculty of Medicine, Department of Paediatrics, University of Turku Doctoral Program of Clinical Investigation (CLIPD), Turku Institute for Child and Youth Research. Conditions of being overweight and obese in childhood are common health problems with longlasting effects into adulthood. Currently 22% of Finnish boys and 12% of Finnish girls are overweight and 4% of Finnish boys and 2% of Finnish girls are obese. The foundation for later health is formed early, even before birth, and the importance of prenatal growth on later health outcomes is widely acknowledged. When the mother is overweight, had high gestational weight gain and disturbances in glucose metabolism during pregnancy, an increased risk of obesity in children is present. On the other hand, breastfeeding and later introduction of complementary foods are associated with a decreased obesity risk. In addition to these, many genetic and environmental factors have an effect on obesity risk, but the clustering of these factors is not extensively studied. The main objective of this thesis was to provide comprehensive information on prenatal and early postnatal factors associated with weight gain and obesity in infancy up to two years of age. The study was part of the STEPS Study (Steps to Healthy Development), which is a follow-up study consisting of 1797 families. This thesis focused on children up to 24 months of age. Altogether 26% of boys and 17% of girls were overweight and 5% of boys and 4% of girls were obese at 24 months of age according to New Finnish Growth references for Children BMI-for-age criteria. Compared to children who remained normal weight, the children who became overweight or obese showed different growth trajectories already at 13 months of age. The mother being overweight had an impact on children’s birth weight and early growth from birth to 24 months of age. The mean duration of breastfeeding was almost 2 months shorter in overweight women in comparison to normal weight women. A longer duration of breastfeeding was protective against excessive weight gain, high BMI, high body weight and high weight-for-length SDS during the first 24 months of life. Breast milk fatty acid composition differed between overweight and normal weight mothers, and overweight women had more saturated fatty acids and less n-3 fatty acids in breast milk. Overweight women also introduced complementary foods to their infants earlier than normal weight mothers. Genetic risk score calculated from 83 obesogenic- and adiposity-related single nucleotide polymorphisms (SNPs) showed that infants with a high genetic risk for being overweight and obese were heavier at 13 months and 24 months of age than infants with a low genetic risk, thus possibly predisposing to later obesity in obesogenic environment. Obesity Risk Score showed that children with highest number of risk factors had almost 6-fold risk of being overweight and obese at 24 months compared to children with lowest number of risk factors. The accuracy of the Obesity Risk Score in predicting overweight and obesity at 24 months was 82%. This study showed that many of the obesogenic risk factors tend to cluster within children and families and that children who later became overweight or obese show different growth trajectories already at a young age. These results highlight the importance of early detection of children with higher obesity risk as well as the importance of prevention measures focused on parents. Keywords: Breastfeeding, Child, Complementary Feeding, Genes, Glucose metabolism, Growth, Infant Nutrition Physiology, Nutrition, Obesity, Overweight, Programming
Resumo:
Asthma, COPD, and asthma and COPD overlap syndrome (ACOS) are chronic pulmonary diseases with an obstructive component. In COPD, the obstruction is irreversible and the disease is progressive. The aim of the study was to define and analyze factors that affected disease progression and patients’ well-being, prognosis and mortality in Chronic Airway Disease (CAD) cohort. The main focus was on COPD and ACOS patients. Retrospective data from medical records was combined with genetic and prospective follow-up data. Smoking is the biggest risk factor for COPD and even after the diagnosis of the disease, smoking plays an important role in disease development and patient’s prognosis. Sixty percent of the COPD patients had succeeded in smoking cessation. Patients who had managed to quit smoking had lower mortality rates and less psychiatric diseases and alcohol abuse although they were older and had more cardiovascular diseases than patients who continued smoking. Genetic polymorphism rs1051730 in the nicotinic acethylcholine receptor gene (CHRNA3/5) associated with heavy smoking, cancer prevalence and mortality in two Finnish independent cohorts consisting of COPD patients and male smokers. Challenges in smoking cessation and higher mortality rates may be partly due to individual patient’s genetic composition. Approximately 50% of COPD patients are physically inactive and the proportion was higher among current smokers. Physically active and inactive patients didn’t differ from each other in regard to age, gender or comorbidities. Bronchial obstruction explained inactivity only in severe disease. Subjective sensation of dyspnea, however, had very strong association to inactivity and was also associated to low health related quality of life (HRQoL). ACOS patients had a significantly lower HRQoL than either the patients with asthma or with COPD even though they were younger than COPD patients, had better lung functions and smaller tobacco exposure.