8 resultados para Forced circulation

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study focuses on two effects of the presence of a noncondensable gas on the thermal-hydraulic behavior of thecoolant of the primary circuit of a nuclear reactor in the VVER-440 geometry inabnormal situations. First, steam condensation with the presence of air was studied in the horizontal tubes of the steam generator (SG) of the PACTEL test facility. The French thermal-hydraulic CATHARE code was used to study the heat transfer between the primary and secondary side in conditions derived from preliminary experiments performed by VTT using PACTEL. In natural circulation and single-phase vapor conditions, the injection of a volume of air, equivalent to the totalvolume of the primary side of the SG at the entrance of the hot collector, did not stop the heat transfer from the primary to the secondary side. The calculated results indicate that air is located in the second half-length (from the mid-length of the tubes to the cold collector) in all the tubes of the steam generator The hot collector remained full of steam during the transient. Secondly, the potential release of the nitrogen gas dissolved in the water of the accumulators of the emergency core coolant system of the Loviisa nuclear power plant (NPP) was investigated. The author implemented a model of the dissolution and release ofnitrogen gas in the CATHARE code; the model created by the CATHARE developers. In collaboration with VTT, an analytical experiment was performed with some components of PACTEL to determine, in particular, the value of the release time constant of the nitrogen gas in the depressurization conditions representative of the small and intermediate break transients postulated for the Loviisa NPP. Such transients, with simplified operating procedures, were calculated using the modified CATHARE code for various values of the release time constant used in the dissolution and release model. For the small breaks, nitrogen gas is trapped in thecollectors of the SGs in rather large proportions. There, the levels oscillate until the actuation of the low-pressure injection pumps (LPIS) that refill the primary circuit. In the case of the intermediate breaks, most of the nitrogen gas is expelled at the break and almost no nitrogen gas is trapped in the SGs. In comparison with the cases calculated without taking into account the release of nitrogen gas, the start of the LPIS is delayed by between 1 and 1.75 h. Applicability of the obtained results to the real safety conditions must take into accountthe real operating procedures used in the nuclear power plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kaksifaasivirtauksen kuvaamiseen käytettävät mallit, ja menetelmät kaksifaasivirtauksen painehäviön määrittämiseksi kehittyvät yhä monimutkaisimmiksi. Höyrystinputkissa tapahtuvien painehäviöiden arvioinnin vaatiman laskennan suorittamiseksi tietokoneohjelman kehittäminen on välttämätöntä. Tässä työssä on kehitetty itsenäinen PC-ohjelma painehäviöiden arvioimiseksi pakotetulle konvektiovirtaukselle pystysuorissa höyrykattilan höyrystinputkissa. Veden ja vesihöyryn aineominaisuuksien laskentaan käytetään IAPWS-IF97 –yhtälökokoelmaa sekä muita tarvittavia IAPWS:n suosittelemia yhtälöitä. Höyrystinputkessa kulloinkin vallitsevan virtausmuodon määrittämiseen käytetään sovelluskelpoisia virtausmuotojen välisiä rajoja kuvaavia yhtälöitä. Ohjelmassa käytetään painehäviön määritykseen kirjallisuudessa julkaistuja yhtälöitä, virtausmuodosta riippuen, alijäähtyneelle virtaukselle, kupla-, tulppa- ja rengasvirtaukselle sekä tulistetun höyryn virtaukselle. Ohjelman laskemia painehäviöarvioita verrattiin kirjallisuudesta valittuihin mittaustuloksiin. Laskettujen painehäviöiden virhe vaihteli välillä –19.5 ja +23.9 %. Virheiden itseisarvojen keskiarvo oli 12.8 %.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this thesis was to study the removal of gases from paper mill circulation waters experimentally and to provide data for CFD modeling. Flow and bubble size measurements were carried out in a laboratory scale open gas separation channel. Particle Image Velocimetry (PIV) technique was used to measure the gas and liquid flow fields, while bubble size measurements were conducted using digital imaging technique with back light illumination. Samples of paper machine waters as well as a model solution were used for the experiments. The PIV results show that the gas bubbles near the feed position have the tendency to escape from the circulation channel at a faster rate than those bubbles which are further away from the feed position. This was due to an increased rate of bubble coalescence as a result of the relatively larger bubbles near the feed position. Moreover, a close similarity between the measured slip velocities of the paper mill waters and that of literature values was obtained. It was found that due to dilution of paper mill waters, the observed average bubble size was considerably large as compared to the average bubble sizes in real industrial pulp suspension and circulation waters. Among the studied solutions, the model solution has the highest average drag coefficient value due to its relatively high viscosity. The results were compared to a 2D steady sate CFD simulation model. A standard Euler-Euler k-ε turbulence model was used in the simulations. The channel free surface was modeled as a degassing boundary. From the drag models used in the simulations, the Grace drag model gave velocity fields closest to the experimental values. In general, the results obtained from experiments and CFD simulations are in good qualitative agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A distinctive design feature of steam boiler with natural circulation is the presence of the steam drum which plays a role of the separator of vapor from the flow of water-and-steam mixture coming into steam drum from the furnace tubes. Steam drum with unheated downcomer tubes, deducing from it, and riser (screen/furnace tubes) inside the furnace is a closed circulation loop in which movement of water (downcomer tubes) and water-and-steam mixture (riser tubes) is organized. The movement of the working fluid is appears due to occurrence of the natural pressure, determined by the difference in hydrostatic pressure and the mass of water and water-and-steam mixtures in downcomer and riser tubes and called the driving pressure of the natural circulation:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A distinctive design feature of steam boiler with natural circulation is the presence of the steam drum which plays a role of the separator of vapor from the flow of water-and-steam mixture coming into steam drum from the furnace tubes. Steam drum with unheated downcomer tubes, deducing from it, and riser (screen/furnace tubes) inside the furnace is a closed circulation loop in which movement of water (downcomer tubes) and water-and-steam mixture (riser tubes) is organized. The movement of the working fluid is appears due to occurrence of the natural pressure, determined by the difference in hydrostatic pressure and the mass of water and water-and-steam mixtures in downcomer and riser tubes and called the driving pressure of the natural circulation: S drive = H steam (ρ down + ρ mix) g where: ρ down - density of water in downcomer tubes; ρ mix - density of water in riser tubes; H steam - height of steam content section; g - acceleration of gravity. In steam boilers with natural circulation the circulation rate is usually between 10 and 30. Thus, consumption of water in the circulation circuit “circulation rate times” more than steam output of the boiler. There are two aspects of the design of natural water circulation loops. One is to ensure a sufficient mass flux of circulating water to avoid burnout of evaporator tubes. The other is to avoid tube wall temperature fluctuation and tube vibration due to oscillation of circulation velocity. The design criteria are therefore reduced, in principle, to those of critical heat flux, critical flow rate for burnout, and flow instability. In practical design, however, the circulation velocity and the void fraction at the evaporator tube outlet are used as the design criteria (Seikan I., et. al., 1999). This study has been made with assumption that the heat flux in the furnace of the boiler even all the time. The target of the study was to define the circulation rate of the boiler, thus average heat flux do not change it. I would like to acknowledge professionals from “Foster Wheeler” company for good and comfortable cooperation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tässä työssä perehdytään soodakattiloiden vesikiertomallin rakentamiseen. Työn päätavoitteena on kehittää simulointimallia varten taulukkolaskentapohja, jonka avulla soodakattilan lämpövuotietoja on yksinkertaista ja nopeaa käsitellä ja siirtää Apros 6 -simulointiohjelmaan. Lisäksi tarkoituksena on pyrkiä automatisoimaan työvaiheet mahdollisimman pitkälle, jolloin vesikiertolaskennan tekeminen yksinkertaistuisi, yhtenäistyisi ja tarkentuisi. Tämä on mahdollista Excel- makrojen ja Apros 6:n uusien toimintojen avulla. Apros 6:ssa on nyt mahdollista hyödyntää SCL- komentotiedostoja, joiden avulla sujuva tiedonsiirto Aproksen ja Excelin välillä vodaan toteuttaa. Vesikiertolaskentaan käytettävän datan käsittely on aikaisemmin ollut työlästä ja sen tarkkuus on pitkälti riippunut mallintajasta. Tässä diplomityössä päästään hyödyntämään uusimpia ja realistisempia soodakattiloiden CFD- malleja, joiden avulla pystytään luomaan aikaisempaa tarkemmat lämpövuojakaumat soodakattilan lämpöpinnoille. Tämä muutos parantaa vesikiertolaskennan tarkkuutta. Työn kokeellisessa osassa uutta Excel laskentatyökalua ja uusia lämpövuoarvoja testataan käytännössä. Eräs vanha Apros- vesikiertomalli päivitetään uusilla lämpövuoarvoilla ja sen rakenteeseen tehdään muutoksia tarkkuuden parantamiseksi. Uuden mallin toimivuutta testataan myös 115 %:n kapasiteetilla ja tutkitaan kuinka kyseinen vesikiertopiiri reagoi suurempaan lämpötehoon. Näitä kolmea eri tilannetta vertaillaan toisiinsa ja tarkastellaan eroavaisuuksia niiden vesi-höyrypiireissä.