14 resultados para Field equilibrium finite elements

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this dissertation is to develop finite elements based on the absolute nodal coordinate formulation. The absolute nodal coordinate formulation is a nonlinear finite element formulation, which is introduced for special requirements in the field of flexible multibody dynamics. In this formulation, a special definition for the rotation of elements is employed to ensure the formulation will not suffer from singularities due to large rotations. The absolute nodal coordinate formulation can be used for analyzing the dynamics of beam, plate and shell type structures. The improvements of the formulation are mainly concentrated towards the description of transverse shear deformation. Additionally, the formulation is verified by using conventional iso-parametric solid finite element and geometrically exact beam theory. Previous claims about especially high eigenfrequencies are studied by introducing beam elements based on the absolute nodal coordinate formulation in the framework of the large rotation vector approach. Additionally, the same high eigenfrequency problem is studied by using constraints for transverse deformation. It was determined that the improvements for shear deformation in the transverse direction lead to clear improvements in computational efficiency. This was especially true when comparative stress must be defined, for example when using elasto-plastic material. Furthermore, the developed plate element can be used to avoid certain numerical problems, such as shear and curvature lockings. In addition, it was shown that when compared to conventional solid elements, or elements based on nonlinear beam theory, elements based on the absolute nodal coordinate formulation do not lead to an especially stiff system for the equations of motion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The absolute nodal coordinate formulation was originally developed for the analysis of structures undergoing large rotations and deformations. This dissertation proposes several enhancements to the absolute nodal coordinate formulation based finite beam and plate elements. The main scientific contribution of this thesis relies on the development of elements based on the absolute nodal coordinate formulation that do not suffer from commonly known numerical locking phenomena. These elements can be used in the future in a number of practical applications, for example, analysis of biomechanical soft tissues. This study presents several higher-order Euler–Bernoulli beam elements, a simple method to alleviate Poisson’s and transverse shear locking in gradient deficient plate elements, and a nearly locking free gradient deficient plate element. The absolute nodal coordinate formulation based gradient deficient plate elements developed in this dissertation describe most of the common numerical locking phenomena encountered in the formulation of a continuum mechanics based description of elastic energy. Thus, with these fairly straightforwardly formulated elements that are comprised only of the position and transverse direction gradient degrees of freedom, the pathologies and remedies for the numerical locking phenomena are presented in a clear and understandable manner. The analysis of the Euler–Bernoulli beam elements developed in this study show that the choice of higher gradient degrees of freedom as nodal degrees of freedom leads to a smoother strain field. This improves the rate of convergence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tässä lisensiaatintyössä käsitellään sekaelementtien sovellusmahdollisuuksia absoluuttisten solmukoordinaattien menetelmässä. Absoluuttisten solmukoordinaattien menetelmä on uudentyyppinen lähestymistapa elementtimenetelmän elementtien koordinaattien määrittämiseksi ja sen yhtenä tavoitteena on tehostaa suuria siirtymiä tai kiertymiä sisältävien elementtien laskentatehokkuutta. Tässä työssä absoluuttisten solmukoordinaattien menetelmä esitellään pääpiirteittäin sekä annetaan esimerkkejä muutamista tyypillisimmistä elementeistä lausuttuna edellä mainittujen koordinaattien perusteella. Sekaelementeiksi kutsutaan elementtityyppejä, missä tuntemattomien muuttujien joukkoja on aina enemmän kuin yksi. Sekaelementit erottavat redusoitumattomista elementeistä siirtymäkentän sisältyminen muuttujaryhmään ja hybridielementeistä muuttujien identtiset ulottuvuudet. Sekaelementtejä käytetään esimerkiksi kokoonpuristumattomien materiaalien rakenneanalyyseissä, alentamaan elementiltä vaadittavia jatkuvuusehtoja tai mallintamaan ilmiöitä, missä fysikaaliset ominaisuudet ovat jostain syystä voimakkaasti toisistaan riippuvaisia. Tämän lisensiaatintyön kirjoittamiseksi on tehty tutkimusta sekaelementtien mahdollisuuksista toimia absoluuttisten solmukoordinaattien menetelmässä. Tutkimuksen tuloksena on saatu aikaan kaksi tässä työssä esiteltävää, varsin rajatun toimintakyvyn omaavaa sekaelementtityyppiä, joiden siirtymäkentät on määritelty globaalien koordinaattien suhteen sisältäen myös orientaatiotermit. Tutkimusaihe vaatii kuitenkin vielä paljon lisätyötä, ennen kuin sekaelementtityyppejä voidaan kauttaaltaan soveltaa absoluuttisten solmukoordinaattien menetelmällä toteutetuissa rakenneanalyyseissä.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the work is to study the existing analytical calculation procedures found in literature to calculate the eddy-current losses in surface mounted permanent magnets within PMSM application. The most promising algorithms are implemented with MATLAB software under the dimensional data of LUT prototype machine. In addition finite elements analyze, utilized with help of Flux 2D software from Cedrat Ltd, is applied to calculate the eddy-current losses in permanent magnets. The results obtained from analytical methods are compared with numerical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis work, a strength analysis is made for a boat trailer. The studied trailer structure is manufactured from Ruukki’s structural steel S420. The main focus in this work is in the trailer’s frame. The investigation process consists two main stages. These stages are strain gage measurements and finite elements analysis. Strain gage measurements were performed to the current boat trailer in February 2015. Static durability and fatigue life of the trailer are analyzed with finite element analysis and with two different materials. These materials are the current trailer material Ruukki’s structural steel S420 and new option material high strength precision tube Form 800. The main target by using high strength steel in a trailer is weight reduction. The applied fatigue analysis methods are effective notch stress and structural hot spot stress approaches. The target of these strength analyses is to determine if it is reasonable to change the trailer material to high strength steel. The static strengths of the S420 and Form 800 trailers is sufficient. The fatigue strength of the Form 800 trailer is considerably lower than the fatigue strength of the S420 trailer. For future research, the effect of hot dip galvanization to the high strength steel has to be investigated. The effect of hot dip galvanization to the trailer is investigated by laboratory tests that are not included in this thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this thesis is to define and validate a software engineering approach for the development of a distributed system for the modeling of composite materials, based on the analysis of various existing software development methods. We reviewed the main features of: (1) software engineering methodologies; (2) distributed system characteristics and their effect on software development; (3) composite materials modeling activities and the requirements for the software development. Using the design science as a research methodology, the distributed system for creating models of composite materials is created and evaluated. Empirical experiments which we conducted showed good convergence of modeled and real processes. During the study, we paid attention to the matter of complexity and importance of distributed system and a deep understanding of modern software engineering methods and tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis work deals with a mathematical description of flow in polymeric pipe and in a specific peristaltic pump. This study involves fluid-structure interaction analysis in presence of complex-turbulent flows treated in an arbitrary Lagrangian-Eulerian (ALE) framework. The flow simulations are performed in COMSOL 4.4, as 2D axial symmetric model, and ABAQUS 6.14.1, as 3D model with symmetric boundary conditions. In COMSOL, the fluid and structure problems are coupled by monolithic algorithm, while ABAQUS code links ABAQUS CFD and ABAQUS Standard solvers with single block-iterative partitioned algorithm. For the turbulent features of the flow, the fluid model in both codes is described by RNG k-ϵ. The structural model is described, on the basis of the pipe material, by Elastic models or Hyperelastic Neo-Hookean models with Rayleigh damping properties. In order to describe the pulsatile fluid flow after the pumping process, the available data are often defective for the fluid problem. Engineering measurements are normally able to provide average pressure or velocity at a cross-section. This problem has been analyzed by McDonald's and Womersley's work for average pressure at fixed cross section by Fourier analysis since '50, while nowadays sophisticated techniques including Finite Elements and Finite Volumes exist to study the flow. Finally, we set up peristaltic pipe simulations in ABAQUS code, by using the same model previously tested for the fl uid and the structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamical properties ofshaken granular materials are important in many industrial applications where the shaking is used to mix, segregate and transport them. In this work asystematic, large scale simulation study has been performed to investigate the rheology of dense granular media, in the presence of gas, in a three dimensional vertical cylinder filled with glass balls. The base wall of the cylinder is subjected to sinusoidal oscillation in the vertical direction. The viscoelastic behavior of glass balls during a collision, have been studied experimentally using a modified Newton's Cradle device. By analyzing the results of the measurements, using numerical model based on finite element method, the viscous damping coefficient was determinedfor the glass balls. To obtain detailed information about the interparticle interactions in a shaker, a simplified model for collision between particles of a granular material was proposed. In order to simulate the flow of surrounding gas, a formulation of the equations for fluid flow in a porous medium including particle forces was proposed. These equations are solved with Large Eddy Simulation (LES) technique using a subgrid-model originally proposed for compressible turbulent flows. For a pentagonal prism-shaped container under vertical vibrations, the results show that oscillon type structures were formed. Oscillons are highly localized particle-like excitations of the granular layer. This self-sustaining state was named by analogy with its closest large-scale analogy, the soliton, which was first documented by J.S. Russell in 1834. The results which has been reportedbyBordbar and Zamankhan(2005b)also show that slightly revised fluctuation-dissipation theorem might apply to shaken sand, which appears to be asystem far from equilibrium and could exhibit strong spatial and temporal variations in quantities such as density and local particle velocity. In this light, hydrodynamic type continuum equations were presented for describing the deformation and flow of dense gas-particle mixtures. The constitutive equation used for the stress tensor provides an effective viscosity with a liquid-like character at low shear rates and a gaseous-like behavior at high shear rates. The numerical solutions were obtained for the aforementioned hydrodynamic equations for predicting the flow dynamics ofdense mixture of gas and particles in vertical cylindrical containers. For a heptagonal prism shaped container under vertical vibrations, the model results were found to predict bubbling behavior analogous to those observed experimentally. This bubbling behavior may be explained by the unusual gas pressure distribution found in the bed. In addition, oscillon type structures were found to be formed using a vertically vibrated, pentagonal prism shaped container in agreement with computer simulation results. These observations suggest that the pressure distribution plays a key rolein deformation and flow of dense mixtures of gas and particles under vertical vibrations. The present models provide greater insight toward the explanation of poorly understood hydrodynamic phenomena in the field of granular flows and dense gas-particle mixtures. The models can be generalized to investigate the granular material-container wall interactions which would be an issue of high interests in the industrial applications. By following this approach ideal processing conditions and powder transport can be created in industrial systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Belt-drive systems have been and still are the most commonly used power transmission form in various applications of different scale and use. The peculiar features of the dynamics of the belt-drives include highly nonlinear deformation,large rigid body motion, a dynamical contact through a dry friction interface between the belt and pulleys with sticking and slipping zones, cyclic tension of the belt during the operation and creeping of the belt against the pulleys. The life of the belt-drive is critically related on these features, and therefore, amodel which can be used to study the correlations between the initial values and the responses of the belt-drives is a valuable source of information for the development process of the belt-drives. Traditionally, the finite element models of the belt-drives consist of a large number of elements thatmay lead to computational inefficiency. In this research, the beneficial features of the absolute nodal coordinate formulation are utilized in the modeling of the belt-drives in order to fulfill the following requirements for the successful and efficient analysis of the belt-drive systems: the exact modeling of the rigid body inertia during an arbitrary rigid body motion, the consideration of theeffect of the shear deformation, the exact description of the highly nonlinear deformations and a simple and realistic description of the contact. The use of distributed contact forces and high order beam and plate elements based on the absolute nodal coordinate formulation are applied to the modeling of the belt-drives in two- and three-dimensional cases. According to the numerical results, a realistic behavior of the belt-drives can be obtained with a significantly smaller number of elements and degrees of freedom in comparison to the previously published finite element models of belt-drives. The results of theexamples demonstrate the functionality and suitability of the absolute nodal coordinate formulation for the computationally efficient and realistic modeling ofbelt-drives. This study also introduces an approach to avoid the problems related to the use of the continuum mechanics approach in the definition of elastic forces on the absolute nodal coordinate formulation. This approach is applied to a new computationally efficient two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. The proposed beam element uses a linear displacement field neglecting higher-order terms and a reduced number of nodal coordinates, which leads to fewer degrees of freedom in a finite element.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Thesis the interaction of an electromagnetic field and matter is studied from various aspects in the general framework of cold atoms. Our subjects cover a wide spectrum of phenomena ranging from semiclassical few-level models to fully quantum mechanical interaction with structured reservoirs leading to non-Markovian open quantum system dynamics. Within closed quantum systems, we propose a selective method to manipulate the motional state of atoms in a time-dependent double-well potential and interpret the method in terms of adiabatic processes. Also, we derive a simple wave-packet model, based on distributions of generalized eigenstates, explaining the finite visibility of interference in overlapping continuous-wave atom lasers. In the context of open quantum systems, we develop an unraveling of non-Markovian dynamics in terms of piecewise deterministic quantum jump processes confined in the Hilbert space of the reduced system - the non-Markovian quantum jump method. As examples, we apply it for simple 2- and 3-level systems interacting with a structured reservoir. Also, in the context of ion-cavity QED we study the entanglement generation based on collective Dicke modes in experimentally realistic conditions including photonic losses and an atomic spontaneous decay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical simulation of plasma sources is very important. Such models allows to vary different plasma parameters with high degree of accuracy. Moreover, they allow to conduct measurements not disturbing system balance.Recently, the scientific and practical interest increased in so-called two-chamber plasma sources. In one of them (small or discharge chamber) an external power source is embedded. In that chamber plasma forms. In another (large or diffusion chamber) plasma exists due to the transport of particles and energy through the boundary between chambers.In this particular work two-chamber plasma sources with argon and oxygen as active mediums were onstructed. This models give interesting results in electric field profiles and, as a consequence, in density profiles of charged particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Torrefaction is the partial pyrolysis of wood characterised by thermal degradation of predominantly hemicellulose under inert atmosphere. Torrefaction can be likened to coffee roasting but with wood in place of beans. This relatively new process concept makes wood more like coal. Torrefaction has attracted interest because it potentially enables higher rates of co-firing in existing pulverised-coal power plants and hence greater net CO2 emission reductions. Academic and entrepreneurial interest in torrefaction has sky rocketed in the last decade. Research output has focused on the many aspects of torrefaction – from detailed chemical changes in feedstock to globally-optimised production and supply scenarios with which to sustain EU emission-cutting directives. However, despite its seemingly simple concept, torrefaction has retained a somewhat mysterious standing. Why hasn’t torrefied pellet production become fully commercialised? The question is one of feasibility. This thesis addresses this question. Herein, the feasibility of torrefaction in co-firing applications is approached from three directions. Firstly, the natural limitations imposed by the structure of wood are assessed. Secondly, the environmental impact of production and use of torrefied fuel is evaluated and thirdly, economic feasibility is assessed based on the state of the art of pellet making. The conclusions reached in these domains are as follows. Modification of wood’s chemical structure is limited by its naturally existing constituents. Consequently, key properties of wood with regards to its potential as a co-firing fuel have a finite range. The most ideal benefits gained from wood torrefaction cannot all be realised simultaneously in a single process or product. Although torrefaction at elevated pressure may enhance some properties of torrefied wood, high-energy torrefaction yields are achieved at the expense of other key properties such as heating value, grindability, equilibrium moisture content and the ability to pelletise torrefied wood. Moreover, pelletisation of even moderately torrefied fuels is challenging and achieving a standard level of pellet durability, as required by international standards, is not trivial. Despite a reduced moisture content, brief exposure of torrefied pellets to water from rainfall or emersion results in a high level of moisture retention. Based on the above findings, torrefied pellets are an optimised product. Assessment of energy and CO2-equivalent emission balance indicates that there is no environmental barrier to production and use of torrefied pellets in co-firing. A long product transport distance, however, is necessary in order for emission benefits to exceed those of conventional pellets. Substantial CO2 emission reductions appear possible with this fuel if laboratory milling results carry over to industrial scales for direct co-firing. From demonstrated state-of-the-art pellet properties, however, the economic feasibility of torrefied pellet production falls short of conventional pellets primarily due to the larger capital investment required for production. If the capital investment for torrefied pellet production can be reduced significantly or if the pellet-making issues can be resolved, the two production processes could be economically comparable. In this scenario, however, transatlantic shipping distances and a dry fuel are likely necessary for production to be viable. Based on demonstrated pellet properties to date, environmental aspects and production economics, it is concluded that torrefied pellets do not warrant investment at this time. However, from the presented results, the course of future research in this field is clear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subshifts are sets of configurations over an infinite grid defined by a set of forbidden patterns. In this thesis, we study two-dimensional subshifts offinite type (2D SFTs), where the underlying grid is Z2 and the set of for-bidden patterns is finite. We are mainly interested in the interplay between the computational power of 2D SFTs and their geometry, examined through the concept of expansive subdynamics. 2D SFTs with expansive directions form an interesting and natural class of subshifts that lie between dimensions 1 and 2. An SFT that has only one non-expansive direction is called extremely expansive. We prove that in many aspects, extremely expansive 2D SFTs display the totality of behaviours of general 2D SFTs. For example, we construct an aperiodic extremely expansive 2D SFT and we prove that the emptiness problem is undecidable even when restricted to the class of extremely expansive 2D SFTs. We also prove that every Medvedev class contains an extremely expansive 2D SFT and we provide a characterization of the sets of directions that can be the set of non-expansive directions of a 2D SFT. Finally, we prove that for every computable sequence of 2D SFTs with an expansive direction, there exists a universal object that simulates all of the elements of the sequence. We use the so called hierarchical, self-simulating or fixed-point method for constructing 2D SFTs which has been previously used by Ga´cs, Durand, Romashchenko and Shen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis was performed comprehensive study about the convenience of scallops in plate structures. A literature review was performed and lack of knowledge was fulfilled with fatigue tests performed in the laboratory of Steel Structures at the Lappeenranta University of Technology and with finite element method. The aim of this thesis was to produce design guidance for the use of scallops for different structural details and different loading conditions. An additional aim was to include more precise instructions for scallop design to produce good fatigue resistance and appropriate manufacturing quality. The literature review was performed searching bridge engineering and maritime standards and design guides and studies from scientific databases and reference lists from the literature of this field. Fatigue tests were used to research the effect of using scallops or not using scallops to fatigue strength of bracket specimen. Tests were performed on three specimens with different scallop radii and to five specimens without scallops with different weld penetration depths. Finite element method using solid elements, symmetry and submodels was used to determine stress concentration factors for I-beams with scallops. Stresses were defined with hot spot stress method. Choosing to use a scallop or not in the structure is affected by many factors, such as structural and loading conditions and manufacturability. As a rule of thumb, scallops should be avoided because those cause stress concentration points to the structure and take a lot of time to manufacture. When scallops are not used, good quality welding should be provided and full weld penetration is recommended to be used in load carrying corner weld areas. In some cases, it is advisable to use scallops. In that case, circular scallops are recommended to be used and radius should be chosen from fatigue strength or manufacturing point of view.