14 resultados para Fast and slow twitch muscles

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lukuisissa teollisuussovelluksissa materiaalien, kuten paperin ja teräslevyjen, muokkaamiseen käytettävät pyörivät nippitelat kärsivät aina erilaisten herätteiden synnyttämistä mekaanisista värähtelyistä, jotka voivat aiheuttaa virheitä valmistettaviin tuotteisiin. Tässä työssä tutkittiin viskoelastisia polymeerejä ja polymeeripinnoitteen nipilliseen telasysteemiin synnyttämiä haitallisia itseherätteisiä värähtelyjä. Työn polymeerejä käsittelevässä kirjallisuusosassa luotiin katsaus amorfisten polymeerien fysikaalisiin ominaisuuksiin. Kokeellisessa osuudessa tutkittiin tarkemmin kahden amorfisen telapinnoitepolymeerin termoreologisia ja mekaanisia ominaisuuksia suoritettujen DMTA-mittausten perusteella. Sovittamalla toisen polymeerin master-käyrään yleistetty lineaarisen standardiaineen malli saatiin selville polymeerin mekaaniset parametrit ja approksimaatio sen relaksaatiospektrille. Telapinnoitteen nipilliseen systeemiin synnyttämiä itseherätteisiä värähtelyjä ja niiden seurauksia tarkasteltiin kahdelle telalle ja polymeeripinnoitteelle kehitetyn analyyttisen mallin ja numeeristen laskujen avulla. Pinnoite mallinnettiin lineaarisen standardiaineen mukaisesti. Telasysteemin parametrit määritettiin DMTA-mittaustuloksista ja systeemiä vastaavasta koelaitteesta kokeellisella moodianalyysillä ja elementtimenetelmällä. Numeerisesta stabiilisuusanalyysistä ja liikeyhtälöiden integroinneista saadut tulokset kertovat telapinnoitteen aaltomaisista deformaatiomuodoista ja niiden synnyttämistä taajuusalueittain esiintyvistä epästabiileista värähtelyistä. Telasysteemi on epästabiili pinnoitedeformaatiokuvion systeemiin aiheuttaman herätevoiman taajuuden ollessa lähellä systeemin korkeampaa ominaistaajuutta. Numeerisista tuloksista voitiin ennustaa nopean ja hitaan barringin olemassaolo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methyl chloride is an important chemical intermediate with a variety of applications. It is produced today in large units and shipped to the endusers. Most of the derived products are harmless, as silicones, butyl rubber and methyl cellulose. However, methyl chloride is highly toxic and flammable. On-site production in the required quantities is desirable to reduce the risks involved in transportation and storage. Ethyl chloride is a smaller-scale chemical intermediate that is mainly used in the production of cellulose derivatives. Thus, the combination of onsite production of methyl and ethyl chloride is attractive for the cellulose processing industry, e.g. current and future biorefineries. Both alkyl chlorides can be produced by hydrochlorination of the corresponding alcohol, ethanol or methanol. Microreactors are attractive for the on-site production as the reactions are very fast and involve toxic chemicals. In microreactors, the diffusion limitations can be suppressed and the process safety can be improved. The modular setup of microreactors is flexible to adjust the production capacity as needed. Although methyl and ethyl chloride are important chemical intermediates, the literature available on potential catalysts and reaction kinetics is limited. Thus the thesis includes an extensive catalyst screening and characterization, along with kinetic studies and engineering the hydrochlorination process in microreactors. A range of zeolite and alumina based catalysts, neat and impregnated with ZnCl2, were screened for the methanol hydrochlorination. The influence of zinc loading, support, zinc precursor and pH was investigated. The catalysts were characterized with FTIR, TEM, XPS, nitrogen physisorption, XRD and EDX to identify the relationship between the catalyst characteristics and the activity and selectivity in the methyl chloride synthesis. The acidic properties of the catalyst were strongly influenced upon the ZnCl2 modification. In both cases, alumina and zeolite supports, zinc reacted to a certain amount with specific surface sites, which resulted in a decrease of strong and medium Brønsted and Lewis acid sites and the formation of zinc-based weak Lewis acid sites. The latter are highly active and selective in methanol hydrochlorination. Along with the molecular zinc sites, bulk zinc species are present on the support material. Zinc modified zeolite catalysts exhibited the highest activity also at low temperatures (ca 200 °C), however, showing deactivation with time-onstream. Zn/H-ZSM-5 zeolite catalysts had a higher stability than ZnCl2 modified H-Beta and they could be regenerated by burning the coke in air at 400 °C. Neat alumina and zinc modified alumina catalysts were active and selective at 300 °C and higher temperatures. However, zeolite catalysts can be suitable for methyl chloride synthesis at lower temperatures, i.e. 200 °C. Neat γ-alumina was found to be the most stable catalyst when coated in a microreactor channel and it was thus used as the catalyst for systematic kinetic studies in the microreactor. A binder-free and reproducible catalyst coating technique was developed. The uniformity, thickness and stability of the coatings were extensively characterized by SEM, confocal microscopy and EDX analysis. A stable coating could be obtained by thermally pretreating the microreactor platelets and ball milling the alumina to obtain a small particle size. Slurry aging and slow drying improved the coating uniformity. Methyl chloride synthesis from methanol and hydrochloric acid was performed in an alumina-coated microreactor. Conversions from 4% to 83% were achieved in the investigated temperature range of 280-340 °C. This demonstrated that the reaction is fast enough to be successfully performed in a microreactor system. The performance of the microreactor was compared with a tubular fixed bed reactor. The results obtained with both reactors were comparable, but the microreactor allows a rapid catalytic screening with low consumption of chemicals. As a complete conversion of methanol could not be reached in a single microreactor, a second microreactor was coupled in series. A maximum conversion of 97.6 % and a selectivity of 98.8 % were reached at 340°C, which is close to the calculated values at a thermodynamic equilibrium. A kinetic model based on kinetic experiments and thermodynamic calculations was developed. The model was based on a Langmuir Hinshelwood-type mechanism and a plug flow model for the microreactor. The influence of the reactant adsorption on the catalyst surface was investigated by performing transient experiments and comparing different kinetic models. The obtained activation energy for methyl chloride was ca. two fold higher than the previously published, indicating diffusion limitations in the previous studies. A detailed modeling of the diffusion in the porous catalyst layer revealed that severe diffusion limitations occur starting from catalyst coating thicknesses of 50 μm. At a catalyst coating thickness of ca 15 μm as in the microreactor, the conditions of intrinsic kinetics prevail. Ethanol hydrochlorination was performed successfully in the microreactor system. The reaction temperature was 240-340°C. An almost complete conversion of ethanol was achieved at 340°C. The product distribution was broader than for methanol hydrochlorination. Ethylene, diethyl ether and acetaldehyde were detected as by-products, ethylene being the most dominant by-product. A kinetic model including a thorough thermodynamic analysis was developed and the influence of adsorbed HCl on the reaction rate of ethanol dehydration reactions was demonstrated. The separation of methyl chloride using condensers was investigated. The proposed microreactor-condenser concept enables the production of methyl chloride with a high purity of 99%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Päästöjen vähentäminen on ollut viime vuosina tärkeässä osassa polttomoottoreita kehitettäessä.Monet viralliset tahot asettavat uusia tiukempia päästörajoituksia. Päästörajatovat tyypillisesti olleet tiukimmat autoteollisuuden valmistamille pienille nopeakäyntisille diesel-moottoreille, mutta viime aikoina paineita on kohdistunut myös suurempiin keskinopeisiin ja hidaskäyntisiin diesel-moottoreihin. Päästörajat ovat erilaisia riippuen moottorin tyypistä, käytetystä polttoaineesta ja paikasta missä moottoria käytetään johtuen erilaisista paikallisista laeista ja asetuksista. Eniten huomiota diesel-moottorin päästöissä täytyy kohdistaa typen oksideihin, savun muodostukseen sekä partikkeleihin. Laskennallisen virtausmekaniikan (CFD) avulla on hyvät mahdollisuudet tutkia diesel-moottorin sylinterissä tapahtuvia ilmiöitä palamisen aikana. CFD on hyödyllinen työkalu arvioitaessa moottorin suorituskykyä ja päästöjen muodostumista. CFD:llä on mahdollista testata erilaisten parametrien ja geometrioiden vaikutusta ilman kalliita moottorinkoeajoja. CFD:tä voidaan käyttää myös opetustarkoituksessa lisäämään paloprosessin tuntemusta. Tulevaisuudessa palamissimuloinnit CFD:llä tulevat epäilemättä olemaan tärkeä osa moottorin kehityksessä. Tässä diplomityössä on tehty palamissimuloinnit kahteen erilaisilla poittoaineenruiskutuslaitteistoilla varustettuun Wärtsilän keskinopeaan diesel-moottoriin. W46 moottorin ruiskutuslaitteisto on perinteinen mekaanisesti ohjattu pumppusuutin ja W46-CR moottorissa on elektronisesti ohjattu 'common rail' ruiskutuslaitteisto. Näiden moottorien ja käytössä olevien ruiskutusprofiilien lisäksi on simuloinneilla testattu erilaisia uusia ruiskutusprofiileja, jotta erityyppisten profiilien hyvät ja huonot ominaisuudet tulisivat selville. Matalalla kuormalla kiinnostuksen kohteena on nokipäästöjen muodostus ja täydellä kuormalla NOx-päästöjen muodostus ja polttoaineen kulutus. Simulointien tulokset osoittivat, että noen muodostusta matalalla kuormalla voidaan selvästi vähentää monivaiheisella ruiskutuksella, jossa yksi ruiskutusjakso jaetaan kahteen tai useampaan jaksoon. Erityisen tehokas noen vähentämisessä vaikuttaa olevan ns. jälkiruiskutus (post injection). Matalat NOx-päästöt ja hyvä polttoaineen kulutus täydellä kuormalla on mahdollista saavuttaaasteittain nostettavalla ruiskutusnopeudella.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulsewidth-modulated (PWM) rectifier technology is increasingly used in industrial applications like variable-speed motor drives, since it offers several desired features such as sinusoidal input currents, controllable power factor, bidirectional power flow and high quality DC output voltage. To achieve these features,however, an effective control system with fast and accurate current and DC voltage responses is required. From various control strategies proposed to meet these control objectives, in most cases the commonly known principle of the synchronous-frame current vector control along with some space-vector PWM scheme have been applied. Recently, however, new control approaches analogous to the well-established direct torque control (DTC) method for electrical machines have also emerged to implement a high-performance PWM rectifier. In this thesis the concepts of classical synchronous-frame current control and DTC-based PWM rectifier control are combined and a new converter-flux-based current control (CFCC) scheme is introduced. To achieve sufficient dynamic performance and to ensure a stable operation, the proposed control system is thoroughly analysed and simple rules for the controller design are suggested. Special attention is paid to the estimationof the converter flux, which is the key element of converter-flux-based control. Discrete-time implementation is also discussed. Line-voltage-sensorless reactive reactive power control methods for the L- and LCL-type line filters are presented. For the L-filter an open-loop control law for the d-axis current referenceis proposed. In the case of the LCL-filter the combined open-loop control and feedback control is proposed. The influence of the erroneous filter parameter estimates on the accuracy of the developed control schemes is also discussed. A newzero vector selection rule for suppressing the zero-sequence current in parallel-connected PWM rectifiers is proposed. With this method a truly standalone and independent control of the converter units is allowed and traditional transformer isolation and synchronised-control-based solutions are avoided. The implementation requires only one additional current sensor. The proposed schemes are evaluated by the simulations and laboratory experiments. A satisfactory performance and good agreement between the theory and practice are demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of menopause, hormone therapy (HT) and aging on sleep. Further, the mechanisms behind these effects were examined by studying the associations between sleep and the nocturnal profiles of sleep-related hormones. Crosssectional study protocols were used to evaluate sleep in normal conditions and during recovery from sleep deprivation. The effect of initiation of HT on sleep and sleeprelated hormones was studied in a prospective controlled trial. Young, premenopausal and postmenopausal women were studied, and the methods included polysomnography, 24-h blood sampling, questionnaires and cognitive tests of attention. Postmenopausal women were less satisfied with their sleep quality than premenopausal women, but this was not reflected in sleepiness or attention. The objective sleep quality was mainly similar in pre- and postmenopausal women, but differed from young women. The recovery mechanisms from sleep deprivation were relatively well-preserved after menopause. HT offered no advantage to sleep after sleep deprivation or under normal conditions. The decreased growth hormone (GH) and prolactin (PRL) levels after menopause were reversible with HT. Neither menopause nor HT had any effect on cortisol levels. In premenopausal women, HT had only minor effects on PRL and cortisol levels. The temporal link between GH and slow wave sleep (SWS) was weaker after menopause. PRL levels were temporally associated with sleep stages, and higher levels were seen during SWS and lower during rapid-eye-movement (REM) sleep. Sleep quality after menopause is better determined by age than by menopausal state. Although HT restores the decreased levels of GH and PRL after menopause, it offers no advantage to sleep quality under normal conditions or after sleep deprivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many industrial applications, accurate and fast surface reconstruction is essential for quality control. Variation in surface finishing parameters, such as surface roughness, can reflect defects in a manufacturing process, non-optimal product operational efficiency, and reduced life expectancy of the product. This thesis considers reconstruction and analysis of high-frequency variation, that is roughness, on planar surfaces. Standard roughness measures in industry are calculated from surface topography. A fast and non-contact method to obtain surface topography is to apply photometric stereo in the estimation of surface gradients and to reconstruct the surface by integrating the gradient fields. Alternatively, visual methods, such as statistical measures, fractal dimension and distance transforms, can be used to characterize surface roughness directly from gray-scale images. In this thesis, the accuracy of distance transforms, statistical measures, and fractal dimension are evaluated in the estimation of surface roughness from gray-scale images and topographies. The results are contrasted to standard industry roughness measures. In distance transforms, the key idea is that distance values calculated along a highly varying surface are greater than distances calculated along a smoother surface. Statistical measures and fractal dimension are common surface roughness measures. In the experiments, skewness and variance of brightness distribution, fractal dimension, and distance transforms exhibited strong linear correlations to standard industry roughness measures. One of the key strengths of photometric stereo method is the acquisition of higher frequency variation of surfaces. In this thesis, the reconstruction of planar high-frequency varying surfaces is studied in the presence of imaging noise and blur. Two Wiener filterbased methods are proposed of which one is optimal in the sense of surface power spectral density given the spectral properties of the imaging noise and blur. Experiments show that the proposed methods preserve the inherent high-frequency variation in the reconstructed surfaces, whereas traditional reconstruction methods typically handle incorrect measurements by smoothing, which dampens the high-frequency variation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particulate nanostructures are increasingly used for analytical purposes. Such particles are often generated by chemical synthesis from non-renewable raw materials. Generation of uniform nanoscale particles is challenging and particle surfaces must be modified to make the particles biocompatible and water-soluble. Usually nanoparticles are functionalized with binding molecules (e.g., antibodies or their fragments) and a label substance (if needed). Overall, producing nanoparticles for use in bioaffinity assays is a multistep process requiring several manufacturing and purification steps. This study describes a biological method of generating functionalized protein-based nanoparticles with specific binding activity on the particle surface and label activity inside the particles. Traditional chemical bioconjugation of the particle and specific binding molecules is replaced with genetic fusion of the binding molecule gene and particle backbone gene. The entity of the particle shell and binding moieties are synthesized from generic raw materials by bacteria, and fermentation is combined with a simple purification method based on inclusion bodies. The label activity is introduced during the purification. The process results in particles that are ready-to-use as reagents in bioaffinity. Apoferritin was used as particle body and the system was demonstrated using three different binding moieties: a small protein, a peptide and a single chain Fv antibody fragment that represents a complex protein including disulfide bridge.If needed, Eu3+ was used as label substance. The results showed that production system resulted in pure protein preparations, and the particles were of homogeneous size when visualized with transmission electron microscopy. Passively introduced label was stably associated with the particles, and binding molecules genetically fused to the particle specifically bound target molecules. Functionality of the particles in bioaffinity assays were successfully demonstrated with two types of assays; as labels and in particle-enhanced agglutination assay. This biological production procedure features many advantages that make the process especially suited for applications that have frequent and recurring requirements for homogeneous functional particles. The production process of ready, functional and watersoluble particles follows principles of “green chemistry”, is upscalable, fast and cost-effective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this Bachelor's Thesis is to find out the role of social media in the B-to-B marketing environment of the information technology industry and to discover how IT-firms utilize social media as a part of their customer reference marketing. To reach the objectives the concepts of customer reference marketing and social media are determined. Customer reference marketing can be characterized as one of the most practically relevant but academically relatively overlooked ways in which a company can leverage its customers and delivered solutions and use them as references in its marketing activities. We will cover which external and internal functions customer references have, that contribute to the growth and performance of B-to-B firms. We also address the three mechanisms of customer reference marketing which are 'status transfer', 'validation through testimonials' and 'demonstration of experience and prior performance'. The concept of social media stands for social interaction and creation of user-based content which exclusively occurs through Internet. The social media are excellent tools for networking because of the fast and easy access, easy interaction and vast amount of multimedia attributes. The allocation of social media is determined. The case company helps clarify the specific characteristics of social media usage as part of customer-reference-marketing activities. For IT-firms the best channels to utilize social media in their customer reference marketing activities are publishing and distribution services of content and networking services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acid sulfate (a.s.) soils constitute a major environmental issue. Severe ecological damage results from the considerable amounts of acidity and metals leached by these soils in the recipient watercourses. As even small hot spots may affect large areas of coastal waters, mapping represents a fundamental step in the management and mitigation of a.s. soil environmental risks (i.e. to target strategic areas). Traditional mapping in the field is time-consuming and therefore expensive. Additional more cost-effective techniques have, thus, to be developed in order to narrow down and define in detail the areas of interest. The primary aim of this thesis was to assess different spatial modeling techniques for a.s. soil mapping, and the characterization of soil properties relevant for a.s. soil environmental risk management, using all available data: soil and water samples, as well as datalayers (e.g. geological and geophysical). Different spatial modeling techniques were applied at catchment or regional scale. Two artificial neural networks were assessed on the Sirppujoki River catchment (c. 440 km2) located in southwestern Finland, while fuzzy logic was assessed on several areas along the Finnish coast. Quaternary geology, aerogeophysics and slope data (derived from a digital elevation model) were utilized as evidential datalayers. The methods also required the use of point datasets (i.e. soil profiles corresponding to known a.s. or non-a.s. soil occurrences) for training and/or validation within the modeling processes. Applying these methods, various maps were generated: probability maps for a.s. soil occurrence, as well as predictive maps for different soil properties (sulfur content, organic matter content and critical sulfide depth). The two assessed artificial neural networks (ANNs) demonstrated good classification abilities for a.s. soil probability mapping at catchment scale. Slightly better results were achieved using a Radial Basis Function (RBF) -based ANN than a Radial Basis Functional Link Net (RBFLN) method, narrowing down more accurately the most probable areas for a.s. soil occurrence and defining more properly the least probable areas. The RBF-based ANN also demonstrated promising results for the characterization of different soil properties in the most probable a.s. soil areas at catchment scale. Since a.s. soil areas constitute highly productive lands for agricultural purpose, the combination of a probability map with more specific soil property predictive maps offers a valuable toolset to more precisely target strategic areas for subsequent environmental risk management. Notably, the use of laser scanning (i.e. Light Detection And Ranging, LiDAR) data enabled a more precise definition of a.s. soil probability areas, as well as the soil property modeling classes for sulfur content and the critical sulfide depth. Given suitable training/validation points, ANNs can be trained to yield a more precise modeling of the occurrence of a.s. soils and their properties. By contrast, fuzzy logic represents a simple, fast and objective alternative to carry out preliminary surveys, at catchment or regional scale, in areas offering a limited amount of data. This method enables delimiting and prioritizing the most probable areas for a.s soil occurrence, which can be particularly useful in the field. Being easily transferable from area to area, fuzzy logic modeling can be carried out at regional scale. Mapping at this scale would be extremely time-consuming through manual assessment. The use of spatial modeling techniques enables the creation of valid and comparable maps, which represents an important development within the a.s. soil mapping process. The a.s. soil mapping was also assessed using water chemistry data for 24 different catchments along the Finnish coast (in all, covering c. 21,300 km2) which were mapped with different methods (i.e. conventional mapping, fuzzy logic and an artificial neural network). Two a.s. soil related indicators measured in the river water (sulfate content and sulfate/chloride ratio) were compared to the extent of the most probable areas for a.s. soils in the surveyed catchments. High sulfate contents and sulfate/chloride ratios measured in most of the rivers demonstrated the presence of a.s. soils in the corresponding catchments. The calculated extent of the most probable a.s. soil areas is supported by independent data on water chemistry, suggesting that the a.s. soil probability maps created with different methods are reliable and comparable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There exist several researches and applications about laser welding monitoring and parameter control but not a single one have been created for controlling of laser scribing processes. Laser scribing is considered to be very fast and accurate process and thus it would be necessary to develop accurate turning and monitoring system for such a process. This research focuses on finding out whether it would be possible to develop real-time adaptive control for ultra-fast laser scribing processes utilizing spectrometer online monitoring. The thesis accurately presents how control code for laser parameter tuning is developed using National Instrument's LabVIEW and how spectrometer is being utilized in online monitoring. Results are based on behavior of the control code and accuracy of the spectrometer monitoring when scribing different steel materials. Finally control code success is being evaluated and possible development ideas for future are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study was to explore how do customers’ life-related negative emotions affect real estate business. This was divided into two research questions: 1. What life-related negative emotions can be recognised in real estate customer encounters? 2. How do the recognised emotions affect customer encounters and the realtor’s work? 3. How can the realtor take the emotions into account in customer service? The theoretical background consists of two main lines of study: emotions and customer encounters. A wide literary review on emotions research was conducted from a cognitive psychology point of view, focusing on negative emotions. Emotions research was then combined into the field of customer encounters. Qualitative study was chosen as the methodological basis of the study. Empirical material of this study was collected through in-depth interviews with 13 successful Finnish real estate agents. Narrative research was used as a method for the study. Four life-related emotion categories were recognized in real estate customer encounters: sadness, anger, anxiety and shame. These emotions rose from issues varying from death of a close one to divorce and from major changes in life stages to deep emotional attachment to an old home. The study also found that these incidental negative emotions do affect customer encounters and realtors’ work. The emotions affected the decision making of customers and sometimes overshadowed reason. Some emotions made the customer passive and slow to make any decisions, while others made their decision making fast and hasty. Even though the incidental emotions might not have had anything to do with the real estate deal, they could affect the outcome of the customer encounter and the whole real estate deal. Interestingly enough, the study found that not all successful real estate agents knowingly serve customers in an emotional level. The study does, however, suggest that in fact it may be an ethical decision of the customer server to take into account the emotional state of the customer. Attending to the emotional side of customers does not only increase pleasantness of the customer encounter, but may improve and balance customer decision making and prevent hasty decisions possibly leading to improved customer satisfaction. This study also gave practical managerial implications to customer service providers on how negative incidental emotions can be attended to in a customer encounter. This study could be useful not only to real estate agents, but also in other types of customer service, especially with vulnerable populations or other types of home-related business.