15 resultados para Euler number, Irreducible symplectic manifold, Lagrangian fibration, Moduli space
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Diplomityön tarkoitus oli selvittää verhopäällystyspastoille sopivia analyysimenetelmiä. Verhopäällystyksessä onnistunut päällystystapahtuma vaatii venymäviskositeetin ja pintajännityksen hyvää hallintaa. Kirjallisuusosassa käsiteltiin verhopäällystystä, verhopäällystyspastojen koostumusta, reologiaa ja pintajännitystä. Kirjallisuusosassa käsiteltiin lisäksi verhopäällystyspastojen reologian ja pintajännityksen mittaamiseen soveltuvia mittausmenetelmiä. Verhopäällystyksen luonteen vuoksi kirjallisuusosassa syvennyttiin venymäviskositeetin ja dynaamisen pintajännityksen mittaamiseen tarkoitettuihin menetelmiin. Kokeellisessa osassa tutkittiin päällystyspastasarjojen reologiaa ja pintajännitystä verhopäällystystä varten. Osaan päällystyspastoista luotiin venymäviskositeettia ja osasta laskettiin pintajännitystä. Venymäviskositeetin mittaamista varten työssä käytettiin ACAV A2 -reometriin liitettyjä teräsreikälevyjä. Dynaamisen pintajännityksen mittaamista varten työssä käytettiin KSV BPA-800P -pintajännitysmittaria. ACAV A2 -reometriin liitettyjen teräsreikälevyjen (reiän sisähalkaisija 0,5 tai 0,7 mm) avulla mitattiin venymäviskositeettia kuvaavia Eulerin lukuarvoja onnistuneesti suurilla kiintoainepitoisuuksilla (50, 60 tai 65 p %). Erikoispaksuntajan määrää lisäämällä onnistuttiin luomaan huomattavaa venymäviskositeettia. Kiintoainepitoisuuden kasvaessa kasvoi myös venymäviskositeetti. Tavanomaisille paksuntajille mitattiin hieman kohonneita venymäviskositeetteja verrattuna referenssipäällystyspastaan. Pigmenttikoostumuksella (kalsiumkarbonaatti/kaoliini) ei näyttänyt olevan vaikutusta venymäviskositeettiin, tai vaikutus oli suhteellisen pieni. Dynaamisen pintajännityksen mittaamista varten käytössä ollut KSV BPA-800P -pintajännitysmittari ei toiminut luotettavasti, vaikka näytteitä laimennettiin. Kiintoainepitoisuudessa 10 p-% olleilla laimennoksilla saavutettiin analysoinnin kannalta parhaat tulokset. Tuloksista saatiin kuitenkin viitteitä, että kyseinen mittari voisi olla potentiaalinen menetelmä dynaamisen pintajännityksen mittaamiseksi.
Resumo:
Esitelmä Suomen ISBN-keskus 30 vuotta -juhlassa Helsingin yliopistossa 7.11.2002
Resumo:
Abstract
Resumo:
The basic goal of this study is to extend old and propose new ways to generate knapsack sets suitable for use in public key cryptography. The knapsack problem and its cryptographic use are reviewed in the introductory chapter. Terminology is based on common cryptographic vocabulary. For example, solving the knapsack problem (which is here a subset sum problem) is termed decipherment. Chapter 1 also reviews the most famous knapsack cryptosystem, the Merkle Hellman system. It is based on a superincreasing knapsack and uses modular multiplication as a trapdoor transformation. The insecurity caused by these two properties exemplifies the two general categories of attacks against knapsack systems. These categories provide the motivation for Chapters 2 and 4. Chapter 2 discusses the density of a knapsack and the dangers of having a low density. Chapter 3 interrupts for a while the more abstract treatment by showing examples of small injective knapsacks and extrapolating conjectures on some characteristics of knapsacks of larger size, especially their density and number. The most common trapdoor technique, modular multiplication, is likely to cause insecurity, but as argued in Chapter 4, it is difficult to find any other simple trapdoor techniques. This discussion also provides a basis for the introduction of various categories of non injectivity in Chapter 5. Besides general ideas of non injectivity of knapsack systems, Chapter 5 introduces and evaluates several ways to construct such systems, most notably the "exceptional blocks" in superincreasing knapsacks and the usage of "too small" a modulus in the modular multiplication as a trapdoor technique. The author believes that non injectivity is the most promising direction for development of knapsack cryptosystema. Chapter 6 modifies two well known knapsack schemes, the Merkle Hellman multiplicative trapdoor knapsack and the Graham Shamir knapsack. The main interest is in aspects other than non injectivity, although that is also exploited. In the end of the chapter, constructions proposed by Desmedt et. al. are presented to serve as a comparison for the developments of the subsequent three chapters. Chapter 7 provides a general framework for the iterative construction of injective knapsacks from smaller knapsacks, together with a simple example, the "three elements" system. In Chapters 8 and 9 the general framework is put into practice in two different ways. Modularly injective small knapsacks are used in Chapter 9 to construct a large knapsack, which is called the congruential knapsack. The addends of a subset sum can be found by decrementing the sum iteratively by using each of the small knapsacks and their moduli in turn. The construction is also generalized to the non injective case, which can lead to especially good results in the density, without complicating the deciphering process too much. Chapter 9 presents three related ways to realize the general framework of Chapter 7. The main idea is to join iteratively small knapsacks, each element of which would satisfy the superincreasing condition. As a whole, none of these systems need become superincreasing, though the development of density is not better than that. The new knapsack systems are injective but they can be deciphered with the same searching method as the non injective knapsacks with the "exceptional blocks" in Chapter 5. The final Chapter 10 first reviews the Chor Rivest knapsack system, which has withstood all cryptanalytic attacks. A couple of modifications to the use of this system are presented in order to further increase the security or make the construction easier. The latter goal is attempted by reducing the size of the Chor Rivest knapsack embedded in the modified system. '
Resumo:
This thesis concentrates on developing a practical local approach methodology based on micro mechanical models for the analysis of ductile fracture of welded joints. Two major problems involved in the local approach, namely the dilational constitutive relation reflecting the softening behaviour of material, and the failure criterion associated with the constitutive equation, have been studied in detail. Firstly, considerable efforts were made on the numerical integration and computer implementation for the non trivial dilational Gurson Tvergaard model. Considering the weaknesses of the widely used Euler forward integration algorithms, a family of generalized mid point algorithms is proposed for the Gurson Tvergaard model. Correspondingly, based on the decomposition of stresses into hydrostatic and deviatoric parts, an explicit seven parameter expression for the consistent tangent moduli of the algorithms is presented. This explicit formula avoids any matrix inversion during numerical iteration and thus greatly facilitates the computer implementation of the algorithms and increase the efficiency of the code. The accuracy of the proposed algorithms and other conventional algorithms has been assessed in a systematic manner in order to highlight the best algorithm for this study. The accurate and efficient performance of present finite element implementation of the proposed algorithms has been demonstrated by various numerical examples. It has been found that the true mid point algorithm (a = 0.5) is the most accurate one when the deviatoric strain increment is radial to the yield surface and it is very important to use the consistent tangent moduli in the Newton iteration procedure. Secondly, an assessment of the consistency of current local failure criteria for ductile fracture, the critical void growth criterion, the constant critical void volume fraction criterion and Thomason's plastic limit load failure criterion, has been made. Significant differences in the predictions of ductility by the three criteria were found. By assuming the void grows spherically and using the void volume fraction from the Gurson Tvergaard model to calculate the current void matrix geometry, Thomason's failure criterion has been modified and a new failure criterion for the Gurson Tvergaard model is presented. Comparison with Koplik and Needleman's finite element results shows that the new failure criterion is fairly accurate indeed. A novel feature of the new failure criterion is that a mechanism for void coalescence is incorporated into the constitutive model. Hence the material failure is a natural result of the development of macroscopic plastic flow and the microscopic internal necking mechanism. By the new failure criterion, the critical void volume fraction is not a material constant and the initial void volume fraction and/or void nucleation parameters essentially control the material failure. This feature is very desirable and makes the numerical calibration of void nucleation parameters(s) possible and physically sound. Thirdly, a local approach methodology based on the above two major contributions has been built up in ABAQUS via the user material subroutine UMAT and applied to welded T joints. By using the void nucleation parameters calibrated from simple smooth and notched specimens, it was found that the fracture behaviour of the welded T joints can be well predicted using present methodology. This application has shown how the damage parameters of both base material and heat affected zone (HAZ) material can be obtained in a step by step manner and how useful and capable the local approach methodology is in the analysis of fracture behaviour and crack development as well as structural integrity assessment of practical problems where non homogeneous materials are involved. Finally, a procedure for the possible engineering application of the present methodology is suggested and discussed.
Resumo:
The aim of the present set of studies was to explore primary school children’s Spontaneous Focusing On quantitative Relations (SFOR) and its role in the development of rational number conceptual knowledge. The specific goals were to determine if it was possible to identify a spontaneous quantitative focusing tendency that indexes children’s tendency to recognize and utilize quantitative relations in non-explicitly mathematical situations and to determine if this tendency has an impact on the development of rational number conceptual knowledge in late primary school. To this end, we report on six original empirical studies that measure SFOR in children ages five to thirteen years and the development of rational number conceptual knowledge in ten- to thirteen-year-olds. SFOR measures were developed to determine if there are substantial differences in SFOR that are not explained by the ability to use quantitative relations. A measure of children’s conceptual knowledge of the magnitude representations of rational numbers and the density of rational numbers is utilized to capture the process of conceptual change with rational numbers in late primary school students. Finally, SFOR tendency was examined in relation to the development of rational number conceptual knowledge in these students. Study I concerned the first attempts to measure individual differences in children’s spontaneous recognition and use of quantitative relations in 86 Finnish children from the ages of five to seven years. Results revealed that there were substantial inter-individual differences in the spontaneous recognition and use of quantitative relations in these tasks. This was particularly true for the oldest group of participants, who were in grade one (roughly seven years old). However, the study did not control for ability to solve the tasks using quantitative relations, so it was not clear if these differences were due to ability or SFOR. Study II more deeply investigated the nature of the two tasks reported in Study I, through the use of a stimulated-recall procedure examining children’s verbalizations of how they interpreted the tasks. Results reveal that participants were able to verbalize reasoning about their quantitative relational responses, but not their responses based on exact number. Furthermore, participants’ non-mathematical responses revealed a variety of other aspects, beyond quantitative relations and exact number, which participants focused on in completing the tasks. These results suggest that exact number may be more easily perceived than quantitative relations. As well, these tasks were revealed to contain both mathematical and non-mathematical aspects which were interpreted by the participants as relevant. Study III investigated individual differences in SFOR 84 children, ages five to nine, from the US and is the first to report on the connection between SFOR and other mathematical abilities. The cross-sectional data revealed that there were individual differences in SFOR. Importantly, these differences were not entirely explained by the ability to solve the tasks using quantitative relations, suggesting that SFOR is partially independent from the ability to use quantitative relations. In other words, the lack of use of quantitative relations on the SFOR tasks was not solely due to participants being unable to solve the tasks using quantitative relations, but due to a lack of the spontaneous attention to the quantitative relations in the tasks. Furthermore, SFOR tendency was found to be related to arithmetic fluency among these participants. This is the first evidence to suggest that SFOR may be a partially distinct aspect of children’s existing mathematical competences. Study IV presented a follow-up study of the first graders who participated in Studies I and II, examining SFOR tendency as a predictor of their conceptual knowledge of fraction magnitudes in fourth grade. Results revealed that first graders’ SFOR tendency was a unique predictor of fraction conceptual knowledge in fourth grade, even after controlling for general mathematical skills. These results are the first to suggest that SFOR tendency may play a role in the development of rational number conceptual knowledge. Study V presents a longitudinal study of the development of 263 Finnish students’ rational number conceptual knowledge over a one year period. During this time participants completed a measure of conceptual knowledge of the magnitude representations and the density of rational numbers at three time points. First, a Latent Profile Analysis indicated that a four-class model, differentiating between those participants with high magnitude comparison and density knowledge, was the most appropriate. A Latent Transition Analysis reveal that few students display sustained conceptual change with density concepts, though conceptual change with magnitude representations is present in this group. Overall, this study indicated that there were severe deficiencies in conceptual knowledge of rational numbers, especially concepts of density. The longitudinal Study VI presented a synthesis of the previous studies in order to specifically detail the role of SFOR tendency in the development of rational number conceptual knowledge. Thus, the same participants from Study V completed a measure of SFOR, along with the rational number test, including a fourth time point. Results reveal that SFOR tendency was a predictor of rational number conceptual knowledge after two school years, even after taking into consideration prior rational number knowledge (through the use of residualized SFOR scores), arithmetic fluency, and non-verbal intelligence. Furthermore, those participants with higher-than-expected SFOR scores improved significantly more on magnitude representation and density concepts over the four time points. These results indicate that SFOR tendency is a strong predictor of rational number conceptual development in late primary school children. The results of the six studies reveal that within children’s existing mathematical competences there can be identified a spontaneous quantitative focusing tendency named spontaneous focusing on quantitative relations. Furthermore, this tendency is found to play a role in the development of rational number conceptual knowledge in primary school children. Results suggest that conceptual change with the magnitude representations and density of rational numbers is rare among this group of students. However, those children who are more likely to notice and use quantitative relations in situations that are not explicitly mathematical seem to have an advantage in the development of rational number conceptual knowledge. It may be that these students gain quantitative more and qualitatively better self-initiated deliberate practice with quantitative relations in everyday situations due to an increased SFOR tendency. This suggests that it may be important to promote this type of mathematical activity in teaching rational numbers. Furthermore, these results suggest that there may be a series of spontaneous quantitative focusing tendencies that have an impact on mathematical development throughout the learning trajectory.
Resumo:
Tässä lisensiaatintyössä käsitellään sekaelementtien sovellusmahdollisuuksia absoluuttisten solmukoordinaattien menetelmässä. Absoluuttisten solmukoordinaattien menetelmä on uudentyyppinen lähestymistapa elementtimenetelmän elementtien koordinaattien määrittämiseksi ja sen yhtenä tavoitteena on tehostaa suuria siirtymiä tai kiertymiä sisältävien elementtien laskentatehokkuutta. Tässä työssä absoluuttisten solmukoordinaattien menetelmä esitellään pääpiirteittäin sekä annetaan esimerkkejä muutamista tyypillisimmistä elementeistä lausuttuna edellä mainittujen koordinaattien perusteella. Sekaelementeiksi kutsutaan elementtityyppejä, missä tuntemattomien muuttujien joukkoja on aina enemmän kuin yksi. Sekaelementit erottavat redusoitumattomista elementeistä siirtymäkentän sisältyminen muuttujaryhmään ja hybridielementeistä muuttujien identtiset ulottuvuudet. Sekaelementtejä käytetään esimerkiksi kokoonpuristumattomien materiaalien rakenneanalyyseissä, alentamaan elementiltä vaadittavia jatkuvuusehtoja tai mallintamaan ilmiöitä, missä fysikaaliset ominaisuudet ovat jostain syystä voimakkaasti toisistaan riippuvaisia. Tämän lisensiaatintyön kirjoittamiseksi on tehty tutkimusta sekaelementtien mahdollisuuksista toimia absoluuttisten solmukoordinaattien menetelmässä. Tutkimuksen tuloksena on saatu aikaan kaksi tässä työssä esiteltävää, varsin rajatun toimintakyvyn omaavaa sekaelementtityyppiä, joiden siirtymäkentät on määritelty globaalien koordinaattien suhteen sisältäen myös orientaatiotermit. Tutkimusaihe vaatii kuitenkin vielä paljon lisätyötä, ennen kuin sekaelementtityyppejä voidaan kauttaaltaan soveltaa absoluuttisten solmukoordinaattien menetelmällä toteutetuissa rakenneanalyyseissä.
Resumo:
This dissertation describes an approach for developing a real-time simulation for working mobile vehicles based on multibody modeling. The use of multibody modeling allows comprehensive description of the constrained motion of the mechanical systems involved and permits real-time solving of the equations of motion. By carefully selecting the multibody formulation method to be used, it is possible to increase the accuracy of the multibody model while at the same time solving equations of motion in real-time. In this study, a multibody procedure based on semi-recursive and augmented Lagrangian methods for real-time dynamic simulation application is studied in detail. In the semirecursive approach, a velocity transformation matrix is introduced to describe the dependent coordinates into relative (joint) coordinates, which reduces the size of the generalized coordinates. The augmented Lagrangian method is based on usage of global coordinates and, in that method, constraints are accounted using an iterative process. A multibody system can be modelled as either rigid or flexible bodies. When using flexible bodies, the system can be described using a floating frame of reference formulation. In this method, the deformation mode needed can be obtained from the finite element model. As the finite element model typically involves large number of degrees of freedom, reduced number of deformation modes can be obtained by employing model order reduction method such as Guyan reduction, Craig-Bampton method and Krylov subspace as shown in this study The constrained motion of the working mobile vehicles is actuated by the force from the hydraulic actuator. In this study, the hydraulic system is modeled using lumped fluid theory, in which the hydraulic circuit is divided into volumes. In this approach, the pressure wave propagation in the hoses and pipes is neglected. The contact modeling is divided into two stages: contact detection and contact response. Contact detection determines when and where the contact occurs, and contact response provides the force acting at the collision point. The friction between tire and ground is modelled using the LuGre friction model, which describes the frictional force between two surfaces. Typically, the equations of motion are solved in the full matrices format, where the sparsity of the matrices is not considered. Increasing the number of bodies and constraint equations leads to the system matrices becoming large and sparse in structure. To increase the computational efficiency, a technique for solution of sparse matrices is proposed in this dissertation and its implementation demonstrated. To assess the computing efficiency, augmented Lagrangian and semi-recursive methods are implemented employing a sparse matrix technique. From the numerical example, the results show that the proposed approach is applicable and produced appropriate results within the real-time period.