16 resultados para Ethylene oxide.

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymeric materials that conduct electricity are highly interesting for fundamental studies and beneficial for modern applications in e.g. solar cells, organic field effect transistors (OFETs) as well as in chemical and bio‐sensing. Therefore, it is important to characterize this class of materials with a wide variety of methods. This work summarizes the use of electrochemistry also in combination with spectroscopic methods in synthesis and characterization of electrically conducting polymers and other π‐conjugated systems. The materials studied in this work are intended for organic electronic devices and chemical sensors. Additionally, an important part of the presented work, concerns rational approaches to the development of water‐based inks containing conducting particles. Electrochemical synthesis and electroactivity of conducting polymers can be greatly enhanced in room temperature ionic liquids (RTILs) in comparison to conventional electrolytes. Therefore, poly(para‐phyenylene) (PPP) was electrochemically synthesized in the two representative RTILs: bmimPF6 and bmiTf2N (imidazolium and pyrrolidinium‐based salts, respectively). It was found that the electrochemical synthesis of PPP was significantly enhanced in bmimPF6. Additionally, the results from doping studies of PPP films indicate improved electroactivity in bmimPF6 during oxidation (p‐doping) and in bmiTf2N in the case of reduction (n‐doping). These findings were supported by in situ infrared spectroscopy studies. Conducting poly(benzimidazobenzophenanthroline) (BBL) is a material which can provide relatively high field‐effect mobility of charge carriers in OFET devices. The main disadvantage of this n‐type semiconductor is its limited processability. Therefore in this work BBL was functionalized with poly(ethylene oxide) PEO, varying the length of side chains enabling water dispersions of the studied polymer. It was found that functionalization did not distract the electrochemical activity of the BBL backbone while the processability was improved significantly in comparison to conventional BBL. Another objective was to study highly processable poly(3,4‐ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) water‐based inks for controlled patterning scaled‐down to nearly a nanodomain with the intention to fabricate various chemical sensors. Developed PEDOT:PSS inks greatly improved printing of nanoarrays and with further modification with quaternary ammonium cations enabled fabrication of PEDOT:PSS‐based chemical sensors for lead (II) ions with enhanced adhesion and stability in aqueous environments. This opens new possibilities for development of PEDOT:PSS films that can be used in bio‐related applications. Polycyclic aromatic hydrocarbons (PAHs) are a broad group of π‐conjugated materials consisting of aromatic rings in the range from naphthalene to even hundred rings in one molecule. The research on this type of materials is intriguing, due to their interesting optical properties and resemblance of graphene. The objective was to use electrochemical synthesis to yield relatively large PAHs and fabricate electroactive films that could be used as template material in chemical sensors. Spectroscopic, electrochemical and electrical investigations evidence formation of highly stable films with fast redox response, consisting of molecules with 40 to 60 carbon atoms. Additionally, this approach in synthesis, starting from relatively small PAH molecules was successfully used in chemical sensor for lead (II).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Maan märkyyden vaikutus ilman koostumukseen ja dityppioksidiemissioon hiuemaassa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tiivistelmä: Typpioksiduulivirrat suunnitellun Vuotoksen tekojärven alueen soilta

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Now when the technology fast developing it is very important to control the formation of materials with better properties. In the scientific literature there is a number of works describing the influence of magnetic field on the properties and process of formation of materials. The goal of this master's thesis is to analyze the process of electrochemical synthesis of niobium oxide in the present of magnetic field, to compare properties of formed oxide films and to estimate the influence of magnetic field on the process and on the result of synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtually every cell and organ in the human body is dependent on a proper oxygen supply. This is taken care of by the cardiovascular system that supplies tissues with oxygen precisely according to their metabolic needs. Physical exercise is one of the most demanding challenges the human circulatory system can face. During exercise skeletal muscle blood flow can easily increase some 20-fold and its proper distribution to and within muscles is of importance for optimal oxygen delivery. The local regulation of skeletal muscle blood flow during exercise remains little understood, but adenosine and nitric oxide may take part in this process. In addition to acute exercise, long-term vigorous physical conditioning also induces changes in the cardiovasculature, which leads to improved maximal physical performance. The changes are largely central, such as structural and functional changes in the heart. The function and reserve of the heart’s own vasculature can be studied by adenosine infusion, which according to animal studies evokes vasodilation via it’s a2A receptors. This has, however, never been addressed in humans in vivo and also studies in endurance athletes have shown inconsistent results regarding the effects of sport training on myocardial blood flow. This study was performed on healthy young adults and endurance athletes and local skeletal and cardiac muscle blod flow was measured by positron emission tomography. In the heart, myocardial blood flow reserve and adenosine A2A receptor density, and in skeletal muscle, oxygen extraction and consumption was also measured. The role of adenosine in the control of skeletal muscle blood flow during exercise, and its vasodilator effects, were addressed by infusing competitive inhibitors and adenosine into the femoral artery. The formation of skeletal muscle nitric oxide was also inhibited by a drug, with and without prostanoid blockade. As a result and conclusion, it can be said that skeletal muscle blood flow heterogeneity decreases with increasing exercise intensity most likely due to increased vascular unit recruitment, but exercise hyperemia is a very complex phenomenon that cannot be mimicked by pharmacological infusions, and no single regulator factor (e.g. adenosine or nitric oxide) accounts for a significant part of exercise-induced muscle hyperemia. However, in the present study it was observed for the first time in humans that nitric oxide is not only important regulator of the basal level of muscle blood flow, but also oxygen consumption, and together with prostanoids affects muscle blood flow and oxygen consumption during exercise. Finally, even vigorous endurance training does not seem to lead to supranormal myocardial blood flow reserve, and also other receptors than A2A mediate the vasodilator effects of adenosine. In respect to cardiac work, atheletes heart seems to be luxuriously perfused at rest, which may result from reduced oxygen extraction or impaired efficiency due to pronouncedly enhanced myocardial mass developed to excel in strenuous exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium oxide looping is a carbon dioxide sequestration technique that utilizes the partially reversible reaction between limestone and carbon dioxide in two interconnected fluidised beds, carbonator and calciner. Flue gases from a combustor are fed into the carbonator where calcium oxide reacts with carbon dioxide within the gases at a temperature of 650 ºC. Calcium oxide is transformed into calcium carbonate which is circulated into the regenerative calciner, where calcium carbonate is returned into calcium oxide and a stream of pure carbon dioxide at a higher temperature of 950 ºC. Calcium oxide looping has proved to have a low impact on the overall process efficiency and would be easily retrofitted into existing power plants. This master’s thesis is done in participation to an EU funded project CaOling as a part of the Lappeenranta University of Technology deliverable, reactor modelling and scale-up tools. Thesis concentrates in creating the first model frame and finding the physically relevant phenomena governing the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En djupare förståelse för växelverkan mellan partiklar i suspensioner är av betydelse för utvecklingen av en mängd olika industriella produkter och processer. Till exempel kan nämnas pigmentbaserade färger och bestrykning av papper. Genom att öka kontrollbarheten kan dessa lättare optimeras för att uppnå förbättrade produktegenskaper och/eller sänkta produktionskostnader. Av stor betydelse är även en förbättrad möjlighet att minska produktens miljöpåverkan. I avhandlingen studerades jonstyrkan och jonspecificiteten inverkan i olika akvatiska suspensioner innehållande olika elektrolyter. De partiklar som avhandlingen omfattade var metalloxider, leror samt latex. Jonstyrkan studerades från låga (c <10-3M) till och med höga (c> 10-1M) elektrolytkoncentrationer. Vid koncentrationer under 0.1 M var partikelladdningen styrd av pH och jonstyrkan. Vid högre elektrolytkoncentrationer påverkade även jonspecificiteten partikelladdningen. Jonspecificiteten arrangerades i fenomenologiska serier funna i litteraturen samt med Born modellen definierad i termodynamiken. Överraskande höga absoluta zeta-potential värden erhölls vid höga elektrolytkoncentrationer vilket visar att den elektrostatiska repulsionen har betydelse även vid dessa förhållanden. Vidare studerades titanoxidsuspensioners egenskaper i akvatiska, icke-akvatiska och blandade lösningssystem under varierande koncentration av oxal- och fosfatsyra. Vid lågt vatteninnehåll studerades även suspensioner med svavelsyra. Konduktiviteten i suspensioner med lågt vatteninnehåll ökade med tillsatt oxal- eller fosforsyra vilket är en omvänd effekt jämfört med svavelsyra eller akvatiska suspensioner. Den omvända effekten skiftade gradvis tillbaka med ökad vatteninnehåll. En analys av suspensionernas adsorption i höga etanolkoncentrationer gjordes med konduktiviteten, pH och zeta-potentialen. Viskositet studerades och applicerades framgångsrikt i viskositet/ytladdningsmodeller utvecklade för akvatiska suspensioner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this doctoral thesis, a power conversion unit for a 10 kWsolid oxide fuel cell is modeled, and a suitable control system is designed. The need for research was identified based on an observation that there was no information available about the characteristics of the solid oxide fuel cell from the perspective of power electronics and the control system, and suitable control methods had not previously been studied in the literature. In addition, because of the digital implementation of the control system, the inherent characteristics of the digital system had to be taken into account in the characteristics of the solid oxide fuel cell (SOFC). The characteristics of the solid oxide fuel cell as well the methods for the modeling and control of the DC/DC converter and the grid converter are studied by a literature survey. Based on the survey, the characteristics of the SOFC as an electrical power source are identified, and a solution to the interfacing of the SOFC in distributed generation is proposed. A mathematical model of the power conversion unit is provided, and the control design for the DC/DC converter and the grid converter is made based on the proposed interfacing solution. The limit cycling phenomenon is identified as a source of low-frequency current ripple, which is found to be insignificant when connected to a grid-tied converter. A method to mitigate a second harmonic originating from the grid interface is proposed, and practical considerations of the operation with the solid oxide fuel cell plant are presented. At the theoretical level, the thesis discusses and summarizes the methods to successfully derive a model for a DC/DC converter, a grid converter, and a power conversion unit. The results of this doctoral thesis can also be used in other applications, and the models and methods can be adopted to similar applications such as photovoltaic systems. When comparing the results with the objectives of the doctoral thesis, we may conclude that the objectives set for the work are met. In this doctoral thesis, theoretical and practical guidelines are presented for the successful control design to connect a SOFC-based distributed generation plant to the utility grid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanum lutetium oxide (LaLuO3) thin films were investigated considering their perspective application for industrial microelectronics. Scanning probe microscopy (SPM) techniques permitted to visualize the surface topography and study the electric properties. This work compared both the material properties (charge behavior for samples of 6 nm and 25 nm width) and the applied SPM modes. Particularly, Kelvin probe force microscopy (KPFM) was applied to characterize local potential difference with high lateral resolution. Measurements showed the difference in morphology, chargeability and charge dissipation time for both samples. The polarity effect was detected for this material for the first time. Lateral spreading of the charged spots indicate the diffusive mechanism to be predominant in charge dissipation. This allowed to estimate the diffusion coefficient and mobility. Using simple electrostatic model it was found that charge is partly leaking into the interface oxide layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the thesis is to study cerium oxide thin films grown by the atomic layer deposition (ALD) for soot removal. Cerium oxide is one of the most important heterogeneous catalysts and can be used in particulate filters and sensors in a diesel exhaust pipe. Its redox/oxidation properties are a key factor in soot oxidation. Thus, the cerium oxide coating can help to keep particulate filters and sensors clean permanently. The literature part of the thesis focuses on the soot removal, introducing the origin and structure of soot, reviewing emissions standards for diesel particulate matter, and presenting methods and catalysts for soot removal. In the experimental part the optimal ALD conditions for cerium oxide were found, the structural properties of cerium oxide thin films were analyzed, and the catalytic activity of the cerium oxide for soot oxidation was investigated. Studying ALD growth conditions of cerium oxide films and determining their critical thickness range are important to maximize the catalytic performance operating at comparatively low temperature. It was found that the cerium oxide film deposited at 300 °C with 2000 ALD cycles had the highest catalytic activity. Although the activity was still moderate and did not decrease the soot oxidation temperature enough for a real-life application. The cerium oxide thin film deposited at 300 °C has a different crystal structure, surface morphology and elemental composition with a higher Ce3+ concentration compared to the films deposited at lower temperatures. The different properties of the cerium oxide thin film deposited at 300 °C increase the catalytic activity most likely due to higher surface area and addition of the oxygen vacancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Terpenes are a valuable natural resource for the production of fine chemicals. Turpentine, obtained from biomass and also as a side product of softwood industry, is rich in monoterpenes such as α-pinene and β-pinene, which are widely used as raw materials in the synthesis of flavors, fragrances and pharmaceutical compounds. The rearrangement of their epoxides has been thoroughly studied in recent years, as a method to obtain compounds which are further used in the fine chemical industry. The industrially most desired products of α-pinene oxide isomerization are campholenic aldehyde and trans-carveol. Campholenic aldehyde is an intermediate for the manufacture of sandalwood-like fragrances such as santalol. Trans-carveol is an expensive constituent of the Valencia orange essence oil used in perfume bases and food flavor composition. Furthermore it has been found to exhibit chemoprevention of mammary carcinogenesis. A wide range of iron and ceria supported catalysts were prepared, characterized and tested for α-pinene oxide isomerization in order to selective synthesis of above mentioned products. The highest catalytic activity in the preparation of campholenic aldehyde over iron modified catalysts using toluene as a solvent at 70 °C (total conversion of α-pinene oxide with a selectivity of 66 % to the desired aldehyde) was achieved in the presence of Fe-MCM-41. Furthermore, Fe-MCM-41 catalyst was successfully regenerated without deterioration of catalytic activity and selectivity. The most active catalysts in the synthesis of trans-carveol from α-pinene oxide over iron and ceria modified catalysts in N,N-dimethylacetamide as a solvent at 140 °C (total conversion of α-pinene oxide with selectivity 43 % to trans-carveol) were Fe-Beta-300 and Ce-Si-MCM-41. These catalysts were further tested for an analogous reaction, namely verbenol oxide isomerization. Verbenone is another natural organic compound which can be found in a variety of plants or synthesized by allylic oxidation of α-pinene. An interesting product which is synthesized from verbenone is (1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl)cyclohex-3-ene-1,2-diol. It has been discovered that this diol possesses potent anti-Parkinson activity. The most effective way leading to desired diol starts from verbenone and includes three stages: epoxidation of verbenone to verbenone oxide, reduction of verbenone oxide and subsequent isomerization of obtained verbenol oxide, which is analogous to isomerization of α-pinene oxide. In the research focused on the last step of these synthesis, high selectivity (82 %) to desired diol was achieved in the isomerization of verbenol oxide at a conversion level of 96 % in N,N-dimethylacetamide at 140 °C using iron modified zeolite, Fe-Beta-300. This reaction displayed surprisingly high selectivity, which has not been achieved yet. The possibility of the reuse of heterogeneous catalysts without activity loss was demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different nitrogen oxide removal technologies for rotary lime kiln are studied in this thesis, the main focus being in commercial technologies. Post-combustion methods are investigated in more detail as potential possible NOx removal with combustion methods in rotary lime kiln is more limited or primary methods are already in use. However, secondary methods as NOx scrubber, SNCR or SCR technologies are not listed as the Best Available Technologies defined by European Union. BAT technologies for NOx removal in lime kiln are (1) Optimised combustion and combustion control, (2) Good mixing of fuel and air, (3) Low-NOx burner and (4) Fuel selection/low-N fuel. SNCR method is the most suitable technique for NOx removal in lime kiln when NOx removal from 50 % to 70 % is required in case primary methods are already in use or cannot be applied. In higher removal cases ammonia slip is an issue in SNCR. By using SCR better NOx reduction can be achieved but issues with catalyst materials are expected to arise because of the dust and sulphur dioxide which leads to catalyst poison formation in lower flue gas temperatures. NOx scrubbing has potential when simultaneous NOx and SO2 removal is required. The challenge is that NO cannot be scrubbed directly, but once it is oxidized to NO2 or further scrubbing can be performed as the solubility of NO2 is higher. Commercial installations have not been made regarding SNCR, SCR or NOx scrubbing regarding rotary lime kiln. For SNCR and SCR the closest references come from cement industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For advanced devices in the application fields of data storage, solar cell and biosensing, one of the major challenges to achieve high efficiency is the fabrication of nanopatterned metal oxide surfaces. Such surfaces often require both precise structure at the nanometer scale and controllable patterned structure at the macro scale. Nowadays, the dominating candidates to fabricate nanopatterned surfaces are the lithographic technique and block-copolymer masks, most of which are unfortunately costly and inefficient. An alternative bottom-up approach, which involves organic/inorganic self-assembly and dip-coating deposition, has been studied intensively in recent years and has proven to be an effective technique for the fabrication of nanoperforated metal oxide thin films. The overall objective of this work was to optimize the synthesis conditions of nanoperforated TiO2 (NP-TiO2) thin films, especially to be compatible with mixed metal oxide systems. Another goal was to develop fabrication and processing of NP-TiO2 thin films towards largescale production and seek new applications for solar cells and biosensing. Besides the traditional dip-coating and drop-casting methods, inkjet printing was used to prepare thin films of metal oxides, with the advantage of depositing the ink onto target areas, further enabling cost-effective fabrication of micro-patterned nanoperforated metal oxide thin films. The films were characterized by water contact angle determination, Atomic Force Microscopy, Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Grazing Incidence XRay Diffraction. In this study, well-ordered zinc titanate nanoperforated thin films with different Zn/Ti ratios were produced successfully with zinc precursor content up to 50 mol%, and the dominating phase was Zn2Ti3O8. NP-TiO2 structures were also obtained by a cost-efficient means, namely inkjet printing, at both ambient temperature and 60 °C. To further explore new biosensing applications of nanoperforated oxide thin films, inkjet printing was used for the fabrication of both continuous and patterned polymeric films onto NP-TiO2 and perfluorinated phosphate functionalized NP-TiO2 substrates, respectively. The NP-TiO2 films can be also functionalized with a fluoroalkylsilane, resulting in hydrophobic surfaces on both titania and silica. The surface energy contrast in the nanoperforations can be tuned by irradiating the films with UV light, which provides ideal model systems for wettability studies.