28 resultados para Electromagnetic Phenomena
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
In this Thesis the interaction of an electromagnetic field and matter is studied from various aspects in the general framework of cold atoms. Our subjects cover a wide spectrum of phenomena ranging from semiclassical few-level models to fully quantum mechanical interaction with structured reservoirs leading to non-Markovian open quantum system dynamics. Within closed quantum systems, we propose a selective method to manipulate the motional state of atoms in a time-dependent double-well potential and interpret the method in terms of adiabatic processes. Also, we derive a simple wave-packet model, based on distributions of generalized eigenstates, explaining the finite visibility of interference in overlapping continuous-wave atom lasers. In the context of open quantum systems, we develop an unraveling of non-Markovian dynamics in terms of piecewise deterministic quantum jump processes confined in the Hilbert space of the reduced system - the non-Markovian quantum jump method. As examples, we apply it for simple 2- and 3-level systems interacting with a structured reservoir. Also, in the context of ion-cavity QED we study the entanglement generation based on collective Dicke modes in experimentally realistic conditions including photonic losses and an atomic spontaneous decay.
Resumo:
This work is dedicated to investigation of the energy spectrum of one of the most anisotropic narrow-gap semiconductors, CdSb. At the beginning of the present studies even the model of its energy band structure was not clear. Measurements of galvanomagnetic effects in wide temperature range (1.6 - 300 K) and in magnetic fields up to 30 T were chosen for clarifying of the energy spectrum in the intentionally undoped CdSb single crystals and doped with shallow impurities (In, Ag). Detection of the Shubnikov - de Haas oscillations allowed estimating the fundamental energy spectrum parameters. The shapes of the Fermi surfaces of electrons (sphere) and holes (ellipsoid), the number of the equivalent extremums for valence band (2) and their positions in the Brillouin zone were determined for the first time in this work. Also anisotropy coefficients, components of the tensor of effective masses of carriers, effective masses of density of states, nonparabolicity of the conduction and valence bands, g-factor and its anisotropy for n- and p-CdSb were estimated for the first time during these studies. All the results obtained are compared with the cyclotron resonance data and the corresponding theoretical calculations for p-CdSb. This is basic information for the analyses of the complex transport properties of CdSb and for working out the energy spectrum model of the shallow energy levels of defects and impurities in this semiconductor. It was found out existence of different mechanisms of hopping conductivity in the presence of metal - insulator transition induced by magnetic field in n- and p-CdSb. Quite unusual feature opened in CdSb is that different types of hopping conductivity may take place in the same crystal depending on temperature, magnetic field or even orientation of crystal in magnetic field. Transport properties of undoped p-CdSb samples show that the anisotropy of the resistivity in weak and strong magnetic fields is determined completely by the anisotropy of the effective mass of the holes. Temperature and magnetic field dependence of the Hall coefficient and magnetoresistance is attributed to presence of two groups of holes with different concentrations and mobilities. The analysis demonstrates that below Tcr ~ 20 K and down to ~ 6 - 7 K the low-mobile carriers are itinerant holes with energy E2 ≈ 6 meV. The high-mobile carriers, at all temperatures T < Tcr, are holes activated thermally from a deeper acceptor band to itinerant states of a shallower acceptor band with energy E1 ≈ 3 meV. Analysis of temperature dependences of mobilities confirms the existence of the heavy-hole band or a non-equivalent maximum and two equivalent maxima of the light-hole valence band. Galvanomagnetic effects in n-CdSb reveal the existence of two groups of carriers. These are the electrons of a single minimum in isotropic conduction band and the itinerant electrons of the narrow impurity band, having at low temperatures the energies above the bottom of the conduction band. It is found that above this impurity band exists second impurity band of only localized states and the energy of both impurity bands depend on temperature so that they sink into the band gap when temperature is increased. The bands are splitted by the spin, and in strong magnetic fields the energy difference between them decreases and redistribution of the electrons between the two impurity bands takes place. Mobility of the conduction band carriers demonstrates that scattering in n-CdSb at low temperatures is strongly anisotropic. This is because of domination from scattering on the neutral impurity centers and increasing of the contribution to mobility from scattering by acoustic phonons when temperature increases. Metallic conductivity in zero or weak magnetic field is changed to activated conductivity with increasing of magnetic field. This exhibits a metal-insulator transition (MIT) induced by the magnetic field due to shift of the Fermi level from the interval of extended states to that of the localized states of the electron spectrum near the edge of the conduction band. The Mott variablerange hopping conductivity is observed in the low- and high-field intervals on the insulating side of the MIT. The results yield information about the density of states, the localization radius of the resonant impurity band with completely localized states and about the donor band. In high magnetic fields this band is separated from the conduction band and lies below the resonant impurity bands.
Resumo:
Taajuusmuuttajat aiheuttavat toimintansa seurauksena runsaasti laajakaistaisia sähkömagneettisia häiriöitä. Häiriöt etenevät sekä johtumalla että säteilemällä ja ne ovat seurausta pääasiassa taajuusmuuttajien toimintaan perustuvista nopeista kytkentäilmiöistä sekä puolijohdekomponenttien epälineaarisuuksista. Sähkömagneettisille häiriöille määritellään suurimmat sallitut tasot useissa EMC-standardeissa. Taajuusmuuttajia koskevia EMC-standardia on neljä; tuotestandardi EN 61800-3, harmonisia virtoja pienjänniteverkoissa käsittelevä EN 61000-3-12 sekä yleiset standardit EN 61000-6-1, -6-2 ja EN 61000-6-3, -6-4. Tämän diplomityön tarkoituksena on tutkia ja koota yhteen edellä mainittujen standardien sisältämät vaatimukset. Työn pääpaino on kohdistettu häiriöpäästöille asetettuihin vaatimuksiin, sillä häiriöiden sietoon liittyvien vaatimusten täyttäminen ei taajuusmuuttajien kohdalla yleensä tuota ongelmia.
Resumo:
The studies of flow phenomena, heat and mass transfer in microchannel reactors are beneficial to estimate and evaluate the ability of microchannel reactors to be operated for a given process reaction such as Fischer-Tropsch synthesis. The flow phenomena, for example, the flow regimes and flow patterns in microchannel reactors for both single phase and multiphase flow are affected by the configuration of the flow channel. The reviews of the previous works about the analysis of related parameters that affect the flow phenomena are shown in this report. In order to predict the phenomena of Fischer-Tropsch synthesis in microchannel reactors, the 3-dimensional computational fluid dynamic simulation with commercial software package FLUENT was done to study the flow phenomena and heat transfer for gas phase Fischer-Tropsch products flow in rectangular microchannel with hydraulic diameter 500 ¿m and length 15 cm. Numerical solution with slip boundary condition was used in the simulation and the flowphenomena and heat transfer were determined.
Resumo:
The solid-rotor induction motor provides a mechanically and thermally reliable solution for demanding environments where other rotor solutions are prohibited or questionable. Solid rotors, which are manufactured of single pieces of ferromagnetic material, are commonly used in motors in which the rotationspeeds exceed substantially the conventional speeds of laminated rotors with squirrel-cage. During the operation of a solid-rotor electrical machine, the rotor core forms a conductor for both the magnetic flux and the electrical current. This causes an increase in the rotor resistance and rotor leakage inductance, which essentially decreases the power factor and the efficiency of the machine. The electromagnetic problems related to the solid-rotor induction motor are mostly associated with the low performance of the rotor. Therefore, the main emphasis in this thesis is put on the solid steel rotor designs. The rotor designs studied in thisthesis are based on the fact that the rotor construction should be extremely robust and reliable to withstand the high mechanical stresses caused by the rotational velocity of the rotor. In addition, the demanding operation environment sets requirements for the applied materials because of the high temperatures and oxidizing acids, which may be present in the cooling fluid. Therefore, the solid rotors analyzed in this thesis are made of a single piece of ferromagnetic material without any additional parts, such as copper end-rings or a squirrel-cage. A pure solid rotor construction is rigid and able to keep its balance over a large speed range. It also may tolerate other environmental stresses such as corroding substances or abrasive particles. In this thesis, the main target is to improve the performance of an induction motor equipped with a solid steel rotor by traditional methods: by axial slitting of the rotor, by selecting a proper rotor core material and by coating the rotor with a high-resistive stainless ferromagnetic material. In the solid steel rotor calculation, the rotor end-effects have a significant effect on the rotor characteristics. Thus, the emphasis is also put on the comparison of different rotor endfactors. In addition, a corrective slip-dependent end-factor is proposed. The rotor designs covered in this thesis are the smooth solid rotor, the axially slitted solid rotor and the slitted rotor having a uniform ferromagnetic coating cylinder. The thesis aims at design rules for multi-megawatt machines. Typically, mega-watt-size solidrotor machines find their applications mainly in the field of electric-motor-gas-compression systems, in steam-turbine applications, and in various types of largepower pump applications, where high operational speeds are required. In this thesis, a 120 kW, 10 000 rpm solid-rotor induction motor is usedas a small-scale model for such megawatt-range solid-rotor machines. The performance of the 120 kW solid-rotor induction motors is determined by experimental measurements and finite element calculations.
Resumo:
Within the latest decade high-speed motor technology has been increasingly commonly applied within the range of medium and large power. More particularly, applications like such involved with gas movement and compression seem to be the most important area in which high-speed machines are used. In manufacturing the induction motor rotor core of one single piece of steel it is possible to achieve an extremely rigid rotor construction for the high-speed motor. In a mechanical sense, the solid rotor may be the best possible rotor construction. Unfortunately, the electromagnetic properties of a solid rotor are poorer than the properties of the traditional laminated rotor of an induction motor. This thesis analyses methods for improving the electromagnetic properties of a solid-rotor induction machine. The slip of the solid rotor is reduced notably if the solid rotor is axially slitted. The slitting patterns of the solid rotor are examined. It is shown how the slitting parameters affect the produced torque. Methods for decreasing the harmonic eddy currents on the surface of the rotor are also examined. The motivation for this is to improve the efficiency of the motor to reach the efficiency standard of a laminated rotor induction motor. To carry out these research tasks the finite element analysis is used. An analytical calculation of solid rotors based on the multi-layer transfer-matrix method is developed especially for the calculation of axially slitted solid rotors equipped with wellconducting end rings. The calculation results are verified by using the finite element analysis and laboratory measurements. The prototype motors of 250 – 300 kW and 140 Hz were tested to verify the results. Utilization factor data are given for several other prototypes the largest of which delivers 1000 kW at 12000 min-1.
Resumo:
The plane wave electromagnetic interference (EMI) shielding properties of DC sputtered Ni79Fe16Mo5 and copper layers were studied according to ASTM D 4935-89 on frequency range of 50 MHz – 2.5 GHz and RF magnetic shielding effectiveness by shielded magnetic loop probes. Results show that Ni79Fe16Mo5 provides better RF magnetic shielding above the layer thickness of approximately 120 nm. Copper provides better plane wave shielding effectiveness. The effect of shield internal interfaces was studied by depositing thin multilayer structures with and without a dielectric spacer layer.
Resumo:
The transport of macromolecules, such as low-density lipoprotein (LDL), and their accumulation in the layers of the arterial wall play a critical role in the creation and development of atherosclerosis. Atherosclerosis is a disease of large arteries e.g., the aorta, coronary, carotid, and other proximal arteries that involves a distinctive accumulation of LDL and other lipid-bearing materials in the arterial wall. Over time, plaque hardens and narrows the arteries. The flow of oxygen-rich blood to organs and other parts of the body is reduced. This can lead to serious problems, including heart attack, stroke, or even death. It has been proven that the accumulation of macromolecules in the arterial wall depends not only on the ease with which materials enter the wall, but also on the hindrance to the passage of materials out of the wall posed by underlying layers. Therefore, attention was drawn to the fact that the wall structure of large arteries is different than other vessels which are disease-resistant. Atherosclerosis tends to be localized in regions of curvature and branching in arteries where fluid shear stress (shear rate) and other fluid mechanical characteristics deviate from their normal spatial and temporal distribution patterns in straight vessels. On the other hand, the smooth muscle cells (SMCs) residing in the media layer of the arterial wall respond to mechanical stimuli, such as shear stress. Shear stress may affect SMC proliferation and migration from the media layer to intima. This occurs in atherosclerosis and intimal hyperplasia. The study of blood flow and other body fluids and of heat transport through the arterial wall is one of the advanced applications of porous media in recent years. The arterial wall may be modeled in both macroscopic (as a continuous porous medium) and microscopic scales (as a heterogeneous porous medium). In the present study, the governing equations of mass, heat and momentum transport have been solved for different species and interstitial fluid within the arterial wall by means of computational fluid dynamics (CFD). Simulation models are based on the finite element (FE) and finite volume (FV) methods. The wall structure has been modeled by assuming the wall layers as porous media with different properties. In order to study the heat transport through human tissues, the simulations have been carried out for a non-homogeneous model of porous media. The tissue is composed of blood vessels, cells, and an interstitium. The interstitium consists of interstitial fluid and extracellular fibers. Numerical simulations are performed in a two-dimensional (2D) model to realize the effect of the shape and configuration of the discrete phase on the convective and conductive features of heat transfer, e.g. the interstitium of biological tissues. On the other hand, the governing equations of momentum and mass transport have been solved in the heterogeneous porous media model of the media layer, which has a major role in the transport and accumulation of solutes across the arterial wall. The transport of Adenosine 5´-triphosphate (ATP) is simulated across the media layer as a benchmark to observe how SMCs affect on the species mass transport. In addition, the transport of interstitial fluid has been simulated while the deformation of the media layer (due to high blood pressure) and its constituents such as SMCs are also involved in the model. In this context, the effect of pressure variation on shear stress is investigated over SMCs induced by the interstitial flow both in 2D and three-dimensional (3D) geometries for the media layer. The influence of hypertension (high pressure) on the transport of lowdensity lipoprotein (LDL) through deformable arterial wall layers is also studied. This is due to the pressure-driven convective flow across the arterial wall. The intima and media layers are assumed as homogeneous porous media. The results of the present study reveal that ATP concentration over the surface of SMCs and within the bulk of the media layer is significantly dependent on the distribution of cells. Moreover, the shear stress magnitude and distribution over the SMC surface are affected by transmural pressure and the deformation of the media layer of the aorta wall. This work reflects the fact that the second or even subsequent layers of SMCs may bear shear stresses of the same order of magnitude as the first layer does if cells are arranged in an arbitrary manner. This study has brought new insights into the simulation of the arterial wall, as the previous simplifications have been ignored. The configurations of SMCs used here with elliptic cross sections of SMCs closely resemble the physiological conditions of cells. Moreover, the deformation of SMCs with high transmural pressure which follows the media layer compaction has been studied for the first time. On the other hand, results demonstrate that LDL concentration through the intima and media layers changes significantly as wall layers compress with transmural pressure. It was also noticed that the fraction of leaky junctions across the endothelial cells and the area fraction of fenestral pores over the internal elastic lamina affect the LDL distribution dramatically through the thoracic aorta wall. The simulation techniques introduced in this work can also trigger new ideas for simulating porous media involved in any biomedical, biomechanical, chemical, and environmental engineering applications.
Resumo:
There is an increasing reliance on computers to solve complex engineering problems. This is because computers, in addition to supporting the development and implementation of adequate and clear models, can especially minimize the financial support required. The ability of computers to perform complex calculations at high speed has enabled the creation of highly complex systems to model real-world phenomena. The complexity of the fluid dynamics problem makes it difficult or impossible to solve equations of an object in a flow exactly. Approximate solutions can be obtained by construction and measurement of prototypes placed in a flow, or by use of a numerical simulation. Since usage of prototypes can be prohibitively time-consuming and expensive, many have turned to simulations to provide insight during the engineering process. In this case the simulation setup and parameters can be altered much more easily than one could with a real-world experiment. The objective of this research work is to develop numerical models for different suspensions (fiber suspensions, blood flow through microvessels and branching geometries, and magnetic fluids), and also fluid flow through porous media. The models will have merit as a scientific tool and will also have practical application in industries. Most of the numerical simulations were done by the commercial software, Fluent, and user defined functions were added to apply a multiscale method and magnetic field. The results from simulation of fiber suspension can elucidate the physics behind the break up of a fiber floc, opening the possibility for developing a meaningful numerical model of the fiber flow. The simulation of blood movement from an arteriole through a venule via a capillary showed that the model based on VOF can successfully predict the deformation and flow of RBCs in an arteriole. Furthermore, the result corresponds to the experimental observation illustrates that the RBC is deformed during the movement. The concluding remarks presented, provide a correct methodology and a mathematical and numerical framework for the simulation of blood flows in branching. Analysis of ferrofluids simulations indicate that the magnetic Soret effect can be even higher than the conventional one and its strength depends on the strength of magnetic field, confirmed experimentally by Völker and Odenbach. It was also shown that when a magnetic field is perpendicular to the temperature gradient, there will be additional increase in the heat transfer compared to the cases where the magnetic field is parallel to the temperature gradient. In addition, the statistical evaluation (Taguchi technique) on magnetic fluids showed that the temperature and initial concentration of the magnetic phase exert the maximum and minimum contribution to the thermodiffusion, respectively. In the simulation of flow through porous media, dimensionless pressure drop was studied at different Reynolds numbers, based on pore permeability and interstitial fluid velocity. The obtained results agreed well with the correlation of Macdonald et al. (1979) for the range of actual flow Reynolds studied. Furthermore, calculated results for the dispersion coefficients in the cylinder geometry were found to be in agreement with those of Seymour and Callaghan.
Resumo:
In this dissertation, Active Galactic Nuclei (AGN) and their host galaxies are discussed. Together with transitional events, such as supernovae and gamma-ray bursts, AGN are the most energetic phenomena in the Universe. The dominant fraction of their luminosity originates from the center of a galaxy, where accreting gas falls into a supermassive black hole, converting gravitational energy to radiation. AGN have a wide range of observed properties: e.g. in their emission lines, radio emission, and variability. Most likely, these properties depend significantly on their orientation to our line-of-sight, and to unify AGN into physical classes it is crucial to observe their orientation-independent properties, such as the host galaxies. Furthermore, host galaxy studies are essential to understand the formation and co-evolution of galactic bulges and supermassive black holes. In this thesis, the main focus is on observationally characterizing AGN host galaxies using optical and near-infrared imaging and spectroscopy. BL Lac objects are a class of AGN characterized by rapidly variable and polarized continuum emission across the electromagnetic spectrum, and coredominated radio emission. The near-infrared properties of intermediate redshift BL Lac host galaxies are studied in Paper I. They are found to be large elliptical galaxies that are more luminous than their low redshift counterparts suggesting a strong luminosity evolution, and a contribution from a recent star formation episode. To analyze the stellar content of galaxies in more detail multicolor data, especially observations at blue wavelengths, are essential. In Paper III, optical - near-infrared colors and color gradients are derived for low redshift BL Lac host galaxies. They show bluer colors and steeper color gradients than inactive ellipticals which, most likely, are caused by a relatively young stellar population indicating a different evolutionary stage between AGN hosts and inactive ellipticals. In Paper II, near-infrared imaging of intermediate redshift radio-quiet quasar hosts is used to study their luminosity evolution. The hosts are large elliptical galaxies, but they are systematically fainter than the hosts of radio-loud quasars at similar redshifts, suggesting a link between the luminosity of the host galaxies and the radio properties of AGN. In Paper IV, the characteristics of near-infrared stellar absorption features of low redshift radio galaxies are compared with those of inactive early-type galaxies. The comparison suggests that early-type galaxies with AGN are in a different evolutionary stage than their inactive counterparts. Moreover, radio galaxies are found to contain stellar populations containing both old and intermediate age components.
Resumo:
In this work temperature dependences of resistivity in zero field have been obtained for epitaxially grown Ga1_xMnxAs thin films with 6 % and 8 % Mn content in 50 300 K temperature range. Decrease of resistivity has been observed. Negative magnetoresistance has been explained by empirical spin dependent hopping model. Hall effect has been studied and anomalous Hall effect, inherent to ferromagnetic materials, has been observed. Both normal and anomalous Hall coefficients have been calculated from experimental data, as well as hole densities. Activation energy of impurity level has been estimated.
Resumo:
Power electronic converter drives use, for the sake of high efficiency, pulse-width modulation that results in sequences of high-voltage high-frequency steep-edged pulses. Such a signal contains a set of high harmonics not required for control purposes. Harmonics cause reflections in the cable between the motor and the inverter leading to faster winding insulation ageing. Bearing failures and problems with electromagnetic compatibility may also result. Electrical du/dt filters provide an effective solution to problems caused by pulse-width modulation, thereby increasing the performance and service life of the electrical machines. It is shown that RLC filters effectively decrease the reflection phenomena in the cable. Improved (simple, but effective) solutions are found for both differential- and common-mode signals; these solutions use a galvanic connection between the RLC filter star point and the converter DC link. Foil chokes and film capacitors are among the most widely used components in high-power applications. In actual applications they can be placed in different parts of the cabinet. This fact complicates the arrangement of the cabinet and decreases the reliability of the system. In addition, the inductances of connection wires may prevent filtration at high frequencies. This thesis introduces a new hybrid LC filter that uses a natural capacitance between the turns of the foil choke based on integration of an auxiliary layer into it. The main idea of the hybrid LC filter results from the fact that both the foil choke and the film capacitors have the same roll structure. Moreover, the capacitance between the turns (“intra capacitance”) of the foil inductors is the reason for the deterioration of their properties at high frequencies. It is shown that the proposed filter has a natural cancellation of the intra capacitance. A hybrid LC filter may contain two or more foil layers isolated from each other and coiled on a core. The core material can be iron or even air as in the filter considered in this work. One of the foils, called the main foil, can be placed between the inverter and the motor cable. Other ones, called auxiliary foils, may be connected in star to create differential-mode noise paths, and then coupled to the DC link midpoint to guarantee a traveling path, especially for the common-mode currents. This way, there is a remarkable capacitance between the main foil and the auxiliary foil. Investigations showed that such a system can be described by a simple equivalent LC filter in a wide range of frequencies. Because of its simple hybrid construction, the proposed LC filter can be a cost-effective and competitive solution for modern power drives. In the thesis, the application field of the proposed filter is considered and determined. The basics of hybrid LC filter design are developed further. High-frequency behaviour of the proposed filter is analysed by simulations. Finally, the thesis presents experimental data proving that the hybrid LC filter can be used for du/dt of PWM pulses and reduction of common-mode currents.