31 resultados para Electric circuit analysis.
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Data transmission between an electric motor and a frequency converter is required in variablespeed electric drives because of sensors installed at the motor. Sensor information can be used for various useful applications to improve the system reliability and its properties. Traditionally, the communication medium is implemented by an additional cabling. However, the costs of the traditional method may be an obstacle to the wider application of data transmission between a motor and a frequency converter. In any case, a power cable is always installed between a motor and a frequency converter for power supply, and hence it may be applied as a communication medium for sensor level data. This thesis considers power line communication (PLC) in inverter-fed motor power cables. The motor cable is studied as a communication channel in the frequency band of 100 kHz−30 MHz. The communication channel and noise characteristics are described. All the individual components included in a variable-speed electric drive are presented in detail. A channel model is developed, and it is verified by measurements. A theoretical channel information capacity analysis is carried out to estimate the opportunities of a communication medium. Suitable communication and forward error correction (FEC) methods are suggested. A general method to implement a broadband and Ethernet-based communication medium between a motor and a frequency converter is proposed. A coupling interface is also developed that allows to install the communication device safely to a three-phase inverter-fed motor power cable. Practical tests are carried out, and the results are analyzed. Possible applications for the proposed method are presented. A speed feedback motor control application is verified in detail by simulations and laboratory tests because of restrictions for the delay in the feedback loop caused by PLC. Other possible applications are discussed at a more general level.
Resumo:
Electric motors driven by adjustable-frequency converters may produce periodic excitation forces that can cause torque and speed ripple. Interaction with the driven mechanical system may cause undesirable vibrations that affect the system performance and lifetime. Direct drives in sensitive applications, such as elevators or paper machines, emphasize the importance of smooth torque production. This thesis analyses the non-idealities of frequencyconverters that produce speed and torque ripple in electric drives. The origin of low order harmonics in speed and torque is examined. It is shown how different current measurement error types affect the torque. As the application environment, direct torque control (DTC) method is applied to permanent magnet synchronous machines (PMSM). A simulation model to analyse the effect of the frequency converter non-idealities on the performance of the electric drives is created. Themodel enables to identify potential problems causing torque vibrations and possibly damaging oscillations in electrically driven machine systems. The model is capable of coupling with separate simulation software of complex mechanical loads. Furthermore, the simulation model of the frequency converter's control algorithm can be applied to control a real frequency converter. A commercial frequencyconverter with standard software, a permanent magnet axial flux synchronous motor and a DC motor as the load are used to detect the effect of current measurement errors on load torque. A method to reduce the speed and torque ripple by compensating the current measurement errors is introduced. The method is based on analysing the amplitude of a selected harmonic component of speed as a function oftime and selecting a suitable compensation alternative for the current error. The speed can be either measured or estimated, so the compensation method is applicable also for speed sensorless drives. The proposed compensation method is tested with a laboratory drive, which consists of commercial frequency converter hardware with self-made software and a prototype PMSM. The speed and torque rippleof the test drive are reduced by applying the compensation method. In addition to the direct torque controlled PMSM drives, the compensation method can also beapplied to other motor types and control methods.
Resumo:
The amount of installed wind power has been growing exponentially during the past ten years. As wind turbines have become a significant source of electrical energy, the interactions between the turbines and the electric power network need to be studied more thoroughly than before. Especially, the behavior of the turbines in fault situations is of prime importance; simply disconnecting all wind turbines from the network during a voltage drop is no longer acceptable, since this would contribute to a total network collapse. These requirements have been a contributor to the increased role of simulations in the study and design of the electric drive train of a wind turbine. When planning a wind power investment, the selection of the site and the turbine are crucial for the economic feasibility of the installation. Economic feasibility, on the other hand, is the factor that determines whether or not investment in wind power will continue, contributing to green electricity production and reduction of emissions. In the selection of the installation site and the turbine (siting and site matching), the properties of the electric drive train of the planned turbine have so far been generally not been taken into account. Additionally, although the loss minimization of some of the individual components of the drive train has been studied, the drive train as a whole has received less attention. Furthermore, as a wind turbine will typically operate at a power level lower than the nominal most of the time, efficiency analysis in the nominal operating point is not sufficient. This doctoral dissertation attempts to combine the two aforementioned areas of interest by studying the applicability of time domain simulations in the analysis of the economicfeasibility of a wind turbine. The utilization of a general-purpose time domain simulator, otherwise applied to the study of network interactions and control systems, in the economic analysis of the wind energy conversion system is studied. The main benefits of the simulation-based method over traditional methods based on analytic calculation of losses include the ability to reuse and recombine existing models, the ability to analyze interactions between the components and subsystems in the electric drive train (something which is impossible when considering different subsystems as independent blocks, as is commonly done in theanalytical calculation of efficiencies), the ability to analyze in a rather straightforward manner the effect of selections other than physical components, for example control algorithms, and the ability to verify assumptions of the effects of a particular design change on the efficiency of the whole system. Based on the work, it can be concluded that differences between two configurations can be seen in the economic performance with only minor modifications to the simulation models used in the network interaction and control method study. This eliminates the need ofdeveloping analytic expressions for losses and enables the study of the system as a whole instead of modeling it as series connection of independent blocks with no lossinterdependencies. Three example cases (site matching, component selection, control principle selection) are provided to illustrate the usage of the approach and analyze its performance.
Resumo:
A coupled system simulator, based on analytical circuit equations and a finite element method (FEM) model of the motor has been developed and it is used to analyse a frequency-converterfed industrial squirrel-cage induction motor. Two control systems that emulate the behaviour of commercial direct-torque-controlled (DTC) and vector-controlled industrial frequency converters have been studied, implemented in the simulation software and verified by extensive laboratory tests. Numerous factors that affect the operation of a variable speed drive (VSD) and its energy efficiency have been investigated, and their significance in the simulation of the VSD results has been studied. The dependency of the frequency converter, induction motor and system losses on the switching frequency is investigated by simulations and measurements at different speeds for both the vector control and the DTC. Intensive laboratory measurements have been carried out to verify the simulation results.
Resumo:
A direct-driven permanent magnet synchronous machine for a small urban use electric vehicle is presented. The measured performance of the machine at the test bench as well as the performance over the modified New European Drive Cycle will be given. The effect of optimal current components, maximizing the efficiency and taking into account the iron loss, is compared with the simple id=0 – control. The machine currents and losses during the drive cycle are calculated and compared with each other.
Resumo:
The rotational speed of high-speed electric machines is over 15 000 rpm. These machines are compact in size when compared to the power rate. As a consequence, the heat fluxes are at a high level and the adequacy of cooling becomes an important design criterion. In the high-speed machines, the air gap between the stator and rotor is a narrow flow channel. The cooling air is produced with a fan and the flow is then directed to the air gap. The flow in the gap does not provide sufficient cooling for the stator end windings, and therefore additional cooling is required. This study investigates the heat transfer and flow fields around the coil end windings when cooling jets are used. As a result, an innovative and new assembly is introduced for the cooling jets, with the benefits of a reduced amount of hot spots, a lower pressure drop, and hence a lower power need for the cooling fan. The gained information can also be applied to improve the cooling of electric machines through geometry modifications. The objective of the research is to determine the locations of the hot spots and to find out induced pressure losses with different jet alternatives. Several possibilities to arrange the extra cooling are considered. In the suggested approach cooling is provided by using a row of air jets. The air jets have three main tasks: to cool the coils effectively by direct impingement jets, to increase and cool down the flow that enters the coil end space through the air gap, and to ensure the correct distribution of the flow by forming an air curtain with additional jets. One important aim of this study is the arrangement of cooling jets in such manner that hot spots can be avoided to wide extent. This enables higher power density in high-speed motors. This cooling system can also be applied to the ordinary electric machines when efficient cooling is needed. The numerical calculations have been performed using a commercial Computational Fluid Dynamics software. Two geometries have been generated: cylindrical for the studied machine and Cartesian for the experimental model. The main parameters include the positions, arrangements and number of jets, the jet diameters, and the jet velocities. The investigated cases have been tested with two widely used turbulence models and using a computational grid of over 500 000 cells. The experimental tests have been made by using a simplified model for the end winding space with cooling jets. In the experiments, an emphasis has been given to flow visualisation. The computational analysis shows good agreement with the experimental results. Modelling of the cooling jet arrangement enables also a better understanding of the complex system of heat transfer at end winding space.
Resumo:
In the electrical industry the 50 Hz electric and magnetic fields are often higher than in the average working environment. The electric and magnetic fields can be studied by measuring or by calculatingthe fields in the environment. For example, the electric field under a 400 kV power line is 1 to 10 kV/m, and the magnetic flux density is 1 to 15 µT. Electricand magnetic fields of a power line induce a weak electric field and electric currents in the exposed body. The average current density in a human being standing under a 400 kV line is 1 to 2 mA/m2. The aim of this study is to find out thepossible effects of short term exposure to electric and magnetic fields of electricity power transmission on workers' health, in particular the cardiovascular effects. The study consists of two parts; Experiment I: influence on extrasystoles, and Experiment II: influence on heart rate. In Experiment I two groups, 26 voluntary men (Group 1) and 27 transmission-line workers (Group 2), were measured. Their electrocardiogram (ECG) was recorded with an ambulatory recorder both in and outside the field. In Group 1 the fields were 1.7 to 4.9 kV/m and 1.1 to 7.1 pT; in Group 2 they were 0.1 to 10.2 kV/m and 1.0 to 15.4 pT. In the ECG analysis the only significant observation was a decrease in the heart rate after field exposure (Group 1). The drop cannot be explained with the first measuring method. Therefore Experiment II was carried out. In Experiment II two groups were used; Group 1 (26 male volunteers) were measured in real field exposure, Group 2 (15 male volunteers) in "sham" fields. The subjects of Group 1 spent 1 h outside the field, then 1 h in the field under a 400 kV transmission line, and then again 1 h outside the field. Under the 400 kV linethe field strength varied from 3.5 to 4.3 kV/m, and from 1.4 to 6.6 pT. Group 2spent the entire test period (3 h) in a 33 kV outdoor testing station in a "sham" field. ECG, blood pressure, and electroencephalogram (EEG) were measured by ambulatory methods. Before and after the field exposure, the subjects performed some cardiovascular autonomic function tests. The analysis of the results (Experiments I and II) showed that extrasystoles or arrythmias were as frequent in the field (below 4 kV/m and 4 pT) as outside it. In Experiment II there was no decrease detected in the heart rate, and the systolic and diastolic blood pressure stayed nearly the same. No health effects were found in this study.
Resumo:
IIn electric drives, frequency converters are used to generatefor the electric motor the AC voltage with variable frequency and amplitude. When considering the annual sale of drives in values of money and units sold, the use of low-performance drives appears to be in predominant. These drives have tobe very cost effective to manufacture and use, while they are also expected to fulfill the harmonic distortion standards. One of the objectives has also been to extend the lifetime of the frequency converter. In a traditional frequency converter, a relatively large electrolytic DC-link capacitor is used. Electrolytic capacitors are large, heavy and rather expensive components. In many cases, the lifetime of the electrolytic capacitor is the main factor limiting the lifetime of the frequency converter. To overcome the problem, the electrolytic capacitor is replaced with a metallized polypropylene film capacitor (MPPF). The MPPF has improved properties when compared to the electrolytic capacitor. By replacing the electrolytic capacitor with a film capacitor the energy storage of the DC-linkwill be decreased. Thus, the instantaneous power supplied to the motor correlates with the instantaneous power taken from the network. This yields a continuousDC-link current fed by the diode rectifier bridge. As a consequence, the line current harmonics clearly decrease. Because of the decreased energy storage, the DC-link voltage fluctuates. This sets additional conditions to the controllers of the frequency converter to compensate the fluctuation from the supplied motor phase voltages. In this work three-phase and single-phase frequency converters with small DC-link capacitor are analyzed. The evaluation is obtained with simulations and laboratory measurements.
Resumo:
Position sensitive particle detectors are needed in high energy physics research. This thesis describes the development of fabrication processes and characterization techniques of silicon microstrip detectors used in the work for searching elementary particles in the European center for nuclear research, CERN. The detectors give an electrical signal along the particles trajectory after a collision in the particle accelerator. The trajectories give information about the nature of the particle in the struggle to reveal the structure of the matter and the universe. Detectors made of semiconductors have a better position resolution than conventional wire chamber detectors. Silicon semiconductor is overwhelmingly used as a detector material because of its cheapness and standard usage in integrated circuit industry. After a short spread sheet analysis of the basic building block of radiation detectors, the pn junction, the operation of a silicon radiation detector is discussed in general. The microstrip detector is then introduced and the detailed structure of a double-sided ac-coupled strip detector revealed. The fabrication aspects of strip detectors are discussedstarting from the process development and general principles ending up to the description of the double-sided ac-coupled strip detector process. Recombination and generation lifetime measurements in radiation detectors are discussed shortly. The results of electrical tests, ie. measuring the leakage currents and bias resistors, are displayed. The beam test setups and the results, the signal to noise ratio and the position accuracy, are then described. It was found out in earlier research that a heavy irradiation changes the properties of radiation detectors dramatically. A scanning electron microscope method was developed to measure the electric potential and field inside irradiated detectorsto see how a high radiation fluence changes them. The method and the most important results are discussed shortly.
Resumo:
The aim of the study is to obtain a mathematical description for an alternative variant of controlling a hydraulic circuit with an electrical drive. The electrical and hydraulic systems are described by basic mathematical equations. The flexibilities of the load and boom is modeled with assumed mode method. The model is achieved and proven with simulations. The controller is constructed and proven to decrease oscillations and improve the dynamic response of the system.
Resumo:
Electricity spot prices have always been a demanding data set for time series analysis, mostly because of the non-storability of electricity. This feature, making electric power unlike the other commodities, causes outstanding price spikes. Moreover, the last several years in financial world seem to show that ’spiky’ behaviour of time series is no longer an exception, but rather a regular phenomenon. The purpose of this paper is to seek patterns and relations within electricity price outliers and verify how they affect the overall statistics of the data. For the study techniques like classical Box-Jenkins approach, series DFT smoothing and GARCH models are used. The results obtained for two geographically different price series show that patterns in outliers’ occurrence are not straightforward. Additionally, there seems to be no rule that would predict the appearance of a spike from volatility, while the reverse effect is quite prominent. It is concluded that spikes cannot be predicted based only on the price series; probably some geographical and meteorological variables need to be included in modeling.
Resumo:
Coating and filler pigments have strong influence to the properties of the paper. Filler content can be even over 30 % and pigment content in coating is about 85-95 weight percent. The physical and chemical properties of the pigments are different and the knowledge of these properties is important for optimising of optical and printing properties of the paper. The size and shape of pigment particles can be measured by different analysers which can be based on sedimentation, laser diffraction, changes in electric field etc. In this master's thesis was researched particle properties especially by scanning electron microscope (SEM) and image analysis programs. Research included nine pigments with different particle size and shape. Pigments were analysed by two image analysis programs (INCA Feature and Poikki), Coulter LS230 (laser diffraction) and SediGraph 5100 (sedimentation). The results were compared to perceive the effect of particle shape to the performance of the analysers. Only image analysis programs gave parameters of the particle shape. One part of research was also the sample preparation for SEM. Individual particles should be separated and distinct in ideal sample. Analysing methods gave different results but results from image analysis programs corresponded even to sedimentation or to laser diffraction depending on the particle shape. Detailed analysis of the particle shape required high magnification in SEM, but measured parameters described very well the shape of the particles. Large particles (ecd~1 µm) could be used also in 3D-modelling which enabled the measurement of the thickness of the particles. Scanning electron microscope and image analysis programs were effective and multifunctional tools for particle analyses. Development and experience will devise the usability of analysing method in routine use.
Resumo:
This paper proposes a calibration method which can be utilized for the analysis of SEM images. The field of application of the developed method is a calculation of surface potential distribution of biased silicon edgeless detector. The suggested processing of the data collected by SEM consists of several stages and takes into account different aspects affecting the SEM image. The calibration method doesn’t pretend to be precise but at the same time it gives the basics of potential distribution when the different biasing voltages applied to the detector.
Resumo:
Electricity distribution network operation (NO) models are challenged as they are expected to continue to undergo changes during the coming decades in the fairly developed and regulated Nordic electricity market. Network asset managers are to adapt to competitive technoeconomical business models regarding the operation of increasingly intelligent distribution networks. Factors driving the changes for new business models within network operation include: increased investments in distributed automation (DA), regulative frameworks for annual profit limits and quality through outage cost, increasing end-customer demands, climatic changes and increasing use of data system tools, such as Distribution Management System (DMS). The doctoral thesis addresses the questions a) whether there exist conditions and qualifications for competitive markets within electricity distribution network operation and b) if so, identification of limitations and required business mechanisms. This doctoral thesis aims to provide an analytical business framework, primarily for electric utilities, for evaluation and development purposes of dedicated network operation models to meet future market dynamics within network operation. In the thesis, the generic build-up of a business model has been addressed through the use of the strategicbusiness hierarchy levels of mission, vision and strategy for definition of the strategic direction of the business followed by the planning, management and process execution levels of enterprisestrategy execution. Research questions within electricity distribution network operation are addressed at the specified hierarchy levels. The results of the research represent interdisciplinary findings in the areas of electrical engineering and production economics. The main scientific contributions include further development of the extended transaction cost economics (TCE) for government decisions within electricity networks and validation of the usability of the methodology for the electricity distribution industry. Moreover, DMS benefit evaluations in the thesis based on the outage cost calculations propose theoretical maximum benefits of DMS applications equalling roughly 25% of the annual outage costs and 10% of the respective operative costs in the case electric utility. Hence, the annual measurable theoretical benefits from the use of DMS applications are considerable. The theoretical results in the thesis are generally validated by surveys and questionnaires.
Resumo:
This study compares different electric propulsion systems. Results of the analysis of all the advantages and disadvantages of the different propulsion systems are given. This thesis estimates possibilities to apply different diesel-electric propulsion concepts for different vessel types. Small and medium size vessel’s power ranges are studied. The optimal delivery system is chosen. This choice is made on the base of detailed study of the concepts, electrical equipment market and comparison of mass, volume and efficiency parameters. In this thesis three marine generators are designed. They are: salient pole synchronous generator and two permanent magnet synchronous generators. Their electrical, dimensional, cost and efficiency parameters are compared. To understand all the benefits diagrams with these parameters are prepared. Possible benefits and money savings are estimated. As the result the advantages, disadvantages and boundary conditions for the permanent magnet synchronous generator application in marine electric-power systems are found out.