60 resultados para Dissolution test
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Bioactive glasses are surface-active ceramic materials which support and accelerate bone growth in the body. During the healing of a bone fracture or a large bone defect, fixation is often needed. The aim of this thesis was to determine the dissolution behaviour and biocompatibility of a composite consisting of poly(ε-caprolactone-co-DL-lactide) and bioactive glass (S53P4). In addition the applicability as an injectable material straight to a bone defect was assessed. In in vitro tests the dissolution behaviour of plain copolymer and composites containing bioactive glass granules was evaluated, as well as surface reactivity and the material’s capability to form apatite in simulated body fluid (SBF). The human fibroblast proliferation was tested on materials in cell culture. In in vivo experiments, toxicological tests, material degradation and tissue reactions were tested both in subcutaneous space and in experimental bone defects. The composites containing bioactive glass formed a unified layer of apatite on their surface in SBF. The size and amount of glass granules affected the degradation of polymer matrix, as well the material’s surface reactivity. In cell culture on the test materials the human gingival fibroblasts proliferated and matured faster compared with control materials. In in vitro tests a connective tissue capsule was formed around the specimens, and became thinner in the course of time. Foreign body cell reactions in toxicological tests were mild. In experimental bone defects the specimens with a high concentration of small bioactive glass granules (<45 μm) formed a dense apatite surface layer that restricted the bone ingrowth to material. The range of large glass granules (90-315 μm) with high concentrations formed the best bonding with bone, but slow degradation on the copolymer restricted the bone growth only in the superficial layers. In these studies, the handling properties of the material proved to be good and tissue reactions were mild. The reactivity of bioactive glass was retained inside the copolymer matrix, thus enabling bone conductivity with composites. However, the copolymer was noticed to degradate too slowly compared with the bone healing. Therefore, the porosity of the material should be increased in order to improve tissue healing.
Resumo:
Glass is a unique material with a long history. Several glass products are used daily in our everyday life, often unnoticed. Glass can be found not only in obvious applications such as tableware, windows, and light bulbs, but also in tennis rackets, windmill turbine blades, optical devices, and medical implants. The glasses used at present as implants are inorganic silica-based melt-derived compositions mainly for hard-tissue repair as bone graft substitute in dentistry and orthopedics. The degree of glass reactivity desired varies according to implantation situation and it is vital that the ion release from any glasses used in medical applications is controlled. Understanding the in vitro dissolution rate of glasses provides a first approximation of their behavior in vivo. Specific studies concerning dissolution properties of bioactive glasses have been relatively scarce and mostly concentrated to static condition studies. The motivation behind this work was to develop a simple and accurate method for quantifying the in vitro dissolution rate of highly different types of glass compositions with interest for future clinical applications. By combining information from various experimental conditions, a better knowledge of glass dissolution and the suitability of different glasses for different medical applications can be obtained. Thus, two traditional and one novel approach were utilized in this thesis to study glass dissolution. The chemical durability of silicate glasses was tested in water and TRIS-buffered solution at static and dynamic conditions. The traditional in vitro testing with a TRISbuffered solution under static conditions works well with bioactive or with readily dissolving glasses, and it is easy to follow the ion dissolution reactions. However, in the buffered solution no marked differences between the more durable glasses were observed. The hydrolytic resistance of the glasses was studied using the standard procedure ISO 719. The relative scale given by the standard failed to provide any relevant information when bioactive glasses were studied. However, the clear differences in the hydrolytic resistance values imply that the method could be used as a rapid test to get an overall idea of the biodegradability of glasses. The standard method combined with the ion concentration and pH measurements gives a better estimate of the hydrolytic resistance because of the high silicon amount released from a glass. A sensitive on-line analysis method utilizing inductively coupled plasma optical emission spectrometer and a flow-through micro-volume pH electrode was developed to study the initial dissolution of biocompatible glasses. This approach was found suitable for compositions within a large range of chemical durability. With this approach, the initial dissolution of all ions could be measured simultaneously and quantitatively, which gave a good overall idea of the initial dissolution rates for the individual ions and the dissolution mechanism. These types of results with glass dissolution were presented for the first time during the course of writing this thesis. Based on the initial dissolution patterns obtained with the novel approach using TRIS, the experimental glasses could be divided into four distinct categories. The initial dissolution patterns of glasses correlated well with the anticipated bioactivity. Moreover, the normalized surface-specific mass loss rates and the different in vivo models and the actual in vivo data correlated well. The results suggest that this type of approach can be used for prescreening the suitability of novel glass compositions for future clinical applications. Furthermore, the results shed light on the possible bioactivity of glasses. An additional goal in this thesis was to gain insight into the phase changes occurring during various heat treatments of glasses with three selected compositions. Engineering-type T-T-T curves for glasses 1-98 and 13-93 were stablished. The information gained is essential in manufacturing amorphous porous implants or for drawing of continuous fibers of the glasses. Although both glasses can be hot worked to amorphous products at carefully controlled conditions, 1-98 showed one magnitude greater nucleation and crystal growth rate than 13-93. Thus, 13-93 is better suited than 1-98 for working processes which require long residence times at high temperatures. It was also shown that amorphous and partially crystalline porous implants can be sintered from bioactive glass S53P4. Surface crystallization of S53P4, forming Na2O∙CaO∙2SiO2, was observed to start at 650°C. The secondary crystals of Na2Ca4(PO4)2SiO4, reported for the first time in this thesis, were detected at higher temperatures, from 850°C to 1000°C. The crystal phases formed affected the dissolution behavior of the implants in simulated body fluid. This study opens up new possibilities for using S53P4 to manufacture various structures, while tailoring their bioactivity by controlling the proportions of the different phases. The results obtained in this thesis give valuable additional information and tools to the state of the art for designing glasses with respect to future clinical applications. With the knowledge gained we can identify different dissolution patters and use this information to improve the tuning of glass compositions. In addition, the novel online analysis approach provides an excellent opportunity to further enhance our knowledge of glass behavior in simulated body conditions.
Resumo:
Selostus: Kasvatushäkin ympäristön vaikutus hopeakettujen käyttäytymiseen
Resumo:
Selostus: Ayrshire-ensikoiden koelypsykohtaisen maidontuotannon perinnölliset tunnusluvut laktaation eri vaiheissa
Resumo:
Selostus: Suomen maaperän fosforin tutkiminen 1900-luvulla ja viljavuustutkimuksen kehittäminen
Wild guess, lucky guess, good guess - hazarding at a multiple-choice test of listening comprehension
Resumo:
J Appl Physiol vol 100, no 2, pp 507-511, 2006
T-wave alternans predicts mortality in a population undergoing a clinically indicated exercise test.
Resumo:
Eur Heart J. 2007 Oct;28(19):2332-7. Epub 2007 Jul 25.
Resumo:
Scand J Clin Lab Invest. 2007 Aug 1;:1-11 [Epub ahead of print]
Resumo:
Langattoman laajakaistaisen tietoliikennetekniikan kehittyminen on herättänyt kiinnostuksen sen ammattimaiseen hyödyntämiseen yleisen turvallisuuden ja kriisinhallinnan tarpeisiin. Hätätilanteissa usein olemassa olevat kiinteät tietoliikennejärjestelmät eivät ole ollenkaan käytettävissä tai niiden tarjoama kapasiteetti ei ole riittävä. Tästä syystä on noussut esiin tarve nopeasti toimintakuntoon saatettaville ja itsenäisille langattomille laajakaistaisille järjestelmille. Tässä diplomityössä on tarkoitus tutkia langattomia ad hoc monihyppy -verkkoja yleisen turvallisuuden tarpeiden pohjalta ja toteuttaa testialusta, jolla voidaan demonstroida sekä tutkia tällaisen järjestelmän toimintaa käytännössä. Työssä tutkitaan pisteestä pisteeseen sekä erityisesti pisteestä moneen pisteeseen suoritettavaa tietoliikennettä. Mittausten kohteena on testialustan tiedonsiirtonopeus, lähetysteho ja vastaanottimen herkkyys. Näitä tuloksia käytetään simulaattorin parametreina, jotta simulaattorin tulokset olisivat mahdollisimman aidot ja yhdenmukaiset testialustan kanssa. Sen jälkeen valitaan valikoima yleisen turvallisuuden vaatimusten mukaisia ohjelmia ja sovellusmalleja, joiden suorituskyky mitataan erilaisten reititysmenetelmien alaisena sekä testialustalla että simulaattorilla. Tuloksia arvioidaan ja vertaillaan. Multicast monihyppy -video päätettiin sovelluksista valita tutkimusten pääkohteeksi ja sitä sekä sen ominaisuuksia on tarkoitus myös oikeissa kenttäkokeissa.
Resumo:
Perushyväksymistestaus on oleellinen osa S60 alustan julkaisukandidaatin maturiteetin seurannassa. Perushyväksymistestausta tehdään myös ohjelmiston julkistamiskelpoisuuden varmistamiseksi. Testaustulokset halutaan aina mahdollisimman nopeasti. Lisäksi testaustiimin työmäärä on hiljalleen kasvanut, koska projekteja onenemmän ja korjauksia sisältäviä ja räätälöityjä settejä testataan enemmän. Tässä diplomityössä tutkitaan lyhentäisikö testisetin osan automatisointi testien ajoaikaa ja helpottaisiko se testaajien työtaakkaa. Tarkastelu toteutetaan automatisoimalla osa testisetistä ja kokemuksia esitellään tässä lopputyössä.
Resumo:
Nowadays the used fuel variety in power boilers is widening and new boiler constructions and running models have to be developed. This research and development is done in small pilot plants where more faster analyse about the boiler mass and heat balance is needed to be able to find and do the right decisions already during the test run. The barrier on determining boiler balance during test runs is the long process of chemical analyses of collected input and outputmatter samples. The present work is concentrating on finding a way to determinethe boiler balance without chemical analyses and optimise the test rig to get the best possible accuracy for heat and mass balance of the boiler. The purpose of this work was to create an automatic boiler balance calculation method for 4 MW CFB/BFB pilot boiler of Kvaerner Pulping Oy located in Messukylä in Tampere. The calculation was created in the data management computer of pilot plants automation system. The calculation is made in Microsoft Excel environment, which gives a good base and functions for handling large databases and calculations without any delicate programming. The automation system in pilot plant was reconstructed und updated by Metso Automation Oy during year 2001 and the new system MetsoDNA has good data management properties, which is necessary for big calculations as boiler balance calculation. Two possible methods for calculating boiler balance during test run were found. Either the fuel flow is determined, which is usedto calculate the boiler's mass balance, or the unburned carbon loss is estimated and the mass balance of the boiler is calculated on the basis of boiler's heat balance. Both of the methods have their own weaknesses, so they were constructed parallel in the calculation and the decision of the used method was left to user. User also needs to define the used fuels and some solid mass flowsthat aren't measured automatically by the automation system. With sensitivity analysis was found that the most essential values for accurate boiler balance determination are flue gas oxygen content, the boiler's measured heat output and lower heating value of the fuel. The theoretical part of this work concentrates in the error management of these measurements and analyses and on measurement accuracy and boiler balance calculation in theory. The empirical part of this work concentrates on the creation of the balance calculation for the boiler in issue and on describing the work environment.