9 resultados para Direct synthesis

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of models in Aspen plus was built to simulate the direct synthesis process of hydrogen peroxide in a micro-reactor system. This process model can be used to carry out material balance calculation under various experimental conditions. Three thermodynamic property methods were compared by calculating gas solubility and Uniquac-RK method was finally selected for process model. Two different operation modes with corresponding operation conditions were proposed as the starting point of future experiments. Simulations for these two modes were carried out to get the information of material streams. Moreover, some hydrodynamic parameters such as gas/liquid superficial velocity, gas holdup were also calculated with improved process model. These parameters proved the proposed experimental conditions reasonable to some extent. The influence of operation conditions including temperature, pressure and circulation ratio was analyzed for the first operation mode, where pure oxygen was fed into dissolving tank and hydrogen-carbon dioxide mixture was fed into microreactor directly. The preferred operation conditions for the system are low temperature (2°C) and high pressure (30 bar) in dissolving tank. High circulation ratio might be good in the sense that more oxygen could be dissolved and fed into reactor for reactions, but meanwhile hydrodynamics of microreactor should be considered. Furthermore, more operation conditions of reactor gas/liquid feeds in both of two operation modes were proposed to provide guidance for future experiment design and corresponding hydrodynamic parameters were also calculated. Finally, safety issue was considered from thermodynamic point of view and there is no explosion danger at given experimental plan since the released reaction heat will not cause solvent vaporization inside the microchannels. The improvement of process model still needs further study based on the future experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kandidaatintyön johdantokappaleessa esitellään vetyperoksidi ja mihin sitä käytetään teollisuudessa. Työssä vertaillaan antrakinoniprosessia ja suoraa prosessia sekä selvitetään nykyisin enemmän vetyperoksidituotantoon käytetyn antrakinoniprosessin ongelmakohdat ja osoitetaan, miksi suora synteesi vetyperoksidin tuotannossa olisi parempi vaihtoehto. Kandidaatintyön käsittelee suurilta osin turvallisuusongelmia, joita esiintyy suoran synteesin yhteydessä. Kirjallisuudesta on etsitty ratkaisuja näihin ongelmiin, kuten membraaniprosessin käyttöä räjähdysvaaran välttämiseksi. Pienemmän reaktorin eli ns. mikroreaktorin käyttö tuo mukanaan monia etuja vetyperoksidin tuotantoon. Tällöin prosessi on turvallisempi ja sitä on helpompi hallita. Mikroreaktorissa voidaan käyttää korkeampia lämpötiloja ja paineita kuin makroreaktorilla ilman, että räjähdysvaara prosessissa kasvaisi. Mikroreaktorin sisällä olevat mikrokanavat luovat turvallisen ympäristön synteesille. Aspen plus – simulointiohjelmalla mallinnettiin ja simulointiin suoran prosessin kriittisiä virtoja mikroreaktorissa. Tarkoituksena oli löytää virrat, joissa kulkee mahdollisesti räjähtävä kaasuseos. Kaasumaiset prosessivirrat ovat kriittisimmät vetyperoksidin suorassa synteesissä, koska ne aiheuttavat todennäköisemmin räjähdyksen kuin nestemäiset prosessivirrat. Kaikkein eniten prosessiturvallisuutta uhkaavat ainevirrat ennen ja jälkeen mikroreaktoria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microreactors have proven to be versatile tools for process intensification. Over recent decades, they have increasingly been used for product and process development in chemical industries. Enhanced heat and mass transfer in the reactors due to the extremely high surfacearea- to-volume ratio and interfacial area allow chemical processes to be operated at extreme conditions. Safety is improved by the small holdup volume of the reactors and effective control of pressure and temperature. Hydrogen peroxide is a powerful green oxidant that is used in a wide range of industries. Reduction and auto-oxidation of anthraquinones is currently the main process for hydrogen peroxide production. Direct synthesis is a green alternative and has potential for on-site production. However, there are two limitations: safety concerns because of the explosive gas mixture produced and low selectivity of the process. The aim of this thesis was to develop a process for direct synthesis of hydrogen peroxide utilizing microreactor technology. Experimental and numerical approaches were applied for development of the microreactor. Development of a novel microreactor was commenced by studying the hydrodynamics and mass transfer in prototype microreactor plates. The prototypes were designed and fabricated with the assistance of CFD modeling to optimize the shape and size of the microstructure. Empirical correlations for the mass transfer coefficient were derived. The pressure drop in micro T-mixers was investigated experimentally and numerically. Correlations describing the friction factor for different flow regimes were developed and predicted values were in good agreement with experimental results. Experimental studies were conducted to develop a highly active and selective catalyst with a proper form for the microreactor. Pd catalysts supported on activated carbon cloths were prepared by different treatments during the catalyst preparation. A variety of characterization methods were used for catalyst investigation. The surface chemistry of the support and the oxidation state of the metallic phase in the catalyst play important roles in catalyst activity and selectivity for the direct synthesis. The direct synthesis of hydrogen peroxide was investigated in a bench-scale continuous process using the novel microreactor developed. The microreactor was fabricated based on the hydrodynamic and mass transfer studies and provided a high interfacial area and high mass transfer coefficient. The catalysts were prepared under optimum treatment conditions. The direct synthesis was conducted at various conditions. The thesis represents a step towards a commercially viable direct synthesis. The focus is on the two main challenges: mitigating the safety problem by utilization of microprocess technology and improving the selectivity by catalyst development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The direct synthesis from hydrogen and oxygen is a green alternative for production of hydrogen peroxide. However, this process suffers from two challenges. Firstly, mixtures of hydrogen and oxygen are explosive over a wide range of concentrations (4-94% H2 in O2). Secondly, the catalytic reaction of hydrogen and oxygen involves several reaction pathways, many of them resulting in water production and therfore decreasing selectivity. The present work deals with these two challenges. The safety problem was dealed by employing a novel microstructured reactor. Selectivity of the reaction was highly improved by development a set of new catalysts. The final goal was to develop an effective and safe continuous process for direct synthesis of hydrogen peroxide from H2 and O2. Activated carbon cloth and Sibunit were examined as the catalysts’ supports. Palladium and gold monometallic and palladium-gold bimetallic catalysts were thoroughly investigated by numerous kinetic experiments performed in a tailored batch reactor and several catalyst charachterization methods. A complete set of data for direct synthesis of H2O2 and its catalytic decomposition and hydrogenation was obtained. These data were used to assess factors influencing selectivity and activity of the catalysts in direct synthesis of H2O2 as well as its decomposition and hydrogenation. A novel microstructured reactor was developed based on hydrodynamics and mass transfer studies in prototype microstractural plates. The shape and the size of the structural elements in the microreactor plate were optimized in a way to get high gas-liquid interfacial area and gas-liquid mass transfer. Finally, empirical correlations for the volumetric mass transfer coefficient were derived. A bench-scale continuous process was developed by using the novel microstructral plate reactor. A series of kinetic experiments were performed to investigate the effects of the gas and the liquid feed rates and their ratio, the amount of the catalyst, the gas feed composition and pressure on the final rate of H2O2 production and selectivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents the design and implementation of a GPS-signal source suitable for receiver measurements. The developed signal source is based on direct digital synthesis which generates the intermediate frequency. The intermediate frequency is transfered to the final frequency with the aid of an Inphase/Quadrature modulator. The modulating GPS-data was generated with MATLAB. The signal source was duplicated to form a multi channel source. It was shown that, GPS-signals ment for civil navigation are easy to generate in the laboratory. The hardware does not need to be technically advanced if navigation with high level of accuracy is not needed. It was also shown that, the Inphase/Quadrature modulator can function as a single side band upconverter even with a high intermediate frequency. This concept reduces the demands required for output filtering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subject of this study is the use of direct cinema style in documentary film. The main purpose of this thesis was to the research the ways in which direct cinema style attempts to show and achieve truth in documentary films. The following questions were posed: Is it possible to depict reality in a documentary film; how does the choice of using this style affect the final documentary? The essential purpose of this study was to try to see whether the direct cinema style works when trying to achieve truth in a documentary film. This work consints of two elements, the theoretical part and the short documentary. The theoretical part deals with the history, the truth, and the direct cinema- style in documentaries. The theoretical information of direct cinema has been used when making the short documentary. In the documentary Tuloaula 2 I have studied the way in which using direct cinema -style works in practise. The documentary has followed as strictly as possible the direct cinema style. I was the director, the cameraman and the editor of my documentary film. In the documentary film Tuloaula 2 it appeared that the direct cinema style works best when filming everyday life. By using this style it is easy for the director to observe and leave his own persona in the background. The strength in using the direct cinema style is that it enables the viewer to build his/her own impression on the subject. Even though the direct cinema style aims to achieve objectivity the director has to make numerous subjective choices during both the filming and the editing process. These subjective choices automatically effect the "truth" of the documentary film. The difficulty in a direct cinema style is the large amount of material. This often leads to a long editing phase, which is not often possible in the busy production schedules. The direct cinema style is not at its best when shooting people who are passive because their attention often focuses too much on the camera. In general, the best way to make a documentary film would be to use many documentary styles in one film and not to srictly concentrate on only one style.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary