15 resultados para DEFENSIVE REACTIONS
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Selostus: Rasvojen reaktiot prosessoiduissa kauratuotteissa
Resumo:
Previous studies have demonstrated that clinical pulpal pain can induce the expression of pro-inflammatory neuropeptides in the adjacent gingival crevice fluid (GCF). Vasoactive agents such as substance P (SP) are known to contribute to the inflammatory type of pain and are associated with increased blood flow. More recent animal studies have shown that application of capsaicin on alveolar mucosa provokes pain and neurogenic vasodilatation in the adjacent gingiva. Pain-associated inflammatory reactions may initiate expression of several pro- and anti-inflammatory mediators. Collagenase-2 (MMP-8) has been considered to be the major destructive protease, especially in the periodontitis-affected gingival crevice fluid (GCF). MMP-8 originates mostly from neutrophil leukocytes, the first line of defence cells that exist abundantly in GCF, especially in inflammation. With this background, we wished to clarify the spatial extensions and differences between tooth-pain stimulation and capsaicin-induced neurogenic vasodilatation in human gingiva. Experiments were carried out to study whether tooth stimulation and capsaicin stimulation of alveolar mucosa would induce changes in GCF MMP-8 levels and whether tooth stimulation would release neuropeptide SP in GCF. The experiments were carried out on healthy human volunteers. During the experiments, moderate and high intensity painful tooth stimulation was performed by a constant current tooth stimulator. Moderate tooth stimulation activates A-delta fibres, while high stimulation also activates C-fibres. Painful stimulation of the gingiva was achieved by topical application of capsaicin-moistened filter paper on the mucosal surface. Capsaicin is known to activate selectively nociceptive C-fibres of stimulated tissue. Pain-evoked vasoactive changes in gingivomucosal tissues were mapped by laser Doppler imaging (LDI), which is a sophisticated and non-invasive method for studying e.g. spatial and temporal characteristics of pain- and inflammation-evoked blood flow changes in gingivomucosal tissues. Pain-evoked release of MMP-8 in GCF samples was studied by immunofluorometric assay (IFMA) and Western immunoblotting. The SP levels in GCF were analysed by Enzyme immunoassay (EIA). During the experiments, subjective stimulus-evoked pain responses were determined by a visual analogue pain scale. Unilateral stimulation of alveolar mucosa and attached gingiva by capsaicin evoked a distinct neurogenic vasodilatation in the ipsilateral gingiva, which attenuated rapidly at the midline. Capsaicin stimulation of alveolar mucosa provoked clear inflammatory reactions. In contrast to capsaicin stimuli, tooth stimulation produced symmetrical vasodilatations bilaterally in the gingiva. The ipsilateral responses were significantly smaller during tooth stimulation than during capsaicin stimuli. The current finding – that tooth stimulation evokes bilateral vasodilatation while capsaicin stimulation of the gingiva mainly produces unilateral vasodilatation – emphasises the usefulness of LDI in clarifying spatial features of neurogenic vasoactive changes in the intra-oral tissues. Capsaicin stimulation of the alveolar mucosa induced significant elevations in MMP-8 levels and activation in GCF of the adjacent teeth. During the experiments, no marked changes occurred in MMP-8 levels in the GCF of distantly located teeth. Painful stimulation of the upper incisor provoked elevations in GCF MMP-8 and SP levels of the stimulated tooth. The GCF MMP-8 and SP levels of the non-stimulated teeth were not changed. These results suggest that capsaicin-induced inflammatory reactions in gingivomucosal tissues do not cross the midline in the anterior maxilla. The enhanced reaction found during stimulation of alveolar mucosa indicates that alveolar mucosa is more sensitive to chemical irritants than the attached gingiva. Analysis of these data suggests that capsaicin-evoked neurogenic inflammation in the gingiva can trigger the expression and activation of MMP-8 in GCF of the adjacent teeth. In this study, it is concluded that experimental tooth pain at C-fibre intensity can induce local elevations in MMP-8 and SP levels in GCF. Depending on the role of MMP-8 in inflammation, in addition to surrogated tissue destruction, the elevated MMP-8 in GCF may also reflect accelerated local defensive and anti-inflammatory reactions.
Resumo:
Chlorambucil is an anticancer agent used in the treatment of a variety of cancers, especially in chronic lymphocytic leukemia, and autoimmune diseases. Nevertheless, chlorambucil is potentially mutagenic, teratogenic and carcinogenic. The high antitumor activity and high toxicity of chlorambucil and its main metabolite, phenylacetic acid mustard, to normal tissues have been known for a long time. Despite this, no detailed chemical data on their reactions with biomolecules in aqueous media have been available. The aim of the work described in this thesis was to analyze reactions of chlorambucil with 2’-deoxyribonucleosides and calf thymus DNA in aqueous buffered solution, at physiological pH, and to identify and characterize all adducts by using modern analyzing methods. Our research was also focused on the reactions of phenylacetic acid mustard with 2’-deoxynucleosides under similar conditions. A review of the literature consisting of general background of nucleic acids, alkylating agents and ultraviolet spectroscopy used to identify the purine and pyrimidine nucleosides, as well as the results from experimental work are presented and discussed in this doctoral thesis.
Resumo:
The objective of this thesis is to examine the market reaction around earnings announcements in Finnish stock markets. The aim is to find out whether the extreme market conditions during the financial crisis are reflected in stock prices as a stronger reaction. In addition to this, the purpose is to investigate how extensively Finnish listed companies report the country segmentation of revenues in their interim reports and whether the country risk is having a significant impact on perceived market reaction. The sample covers all companies listed in Helsinki stock exchange at 1.1.2010 and these companies’ interim reports from the first quarter of 2008 to last quarter of 2009. Final sample consists of 81 companies and 630 firm-quarter observations. The data sample has been divided in two parts, of which country risk sample contains 17 companies and 127 observations and comparison sample covers 66 companies and 503 observations. Research methodologies applied in this thesis are event study and cross-sectional regression analysis. Empirical results indicate that the market reaction occurs mainly during the announcement day and is slightly stronger in case of positive earnings surprises than the reactions observed in previous studies. In case of negative earnings surprises no significant differences can be observed. In case of country risk sample and negative earnings surprise market reaction is negative already in advance of the disclosure contrary to comparison sample. In case of positive surprise no differences can be observed. Country risk variable developed during this study seems to explain only minor part of the market reaction.
Resumo:
This dissertation is based on 5 articles which deal with reaction mechanisms of the following selected industrially important organic reactions: 1. dehydrocyclization of n-butylbenzene to produce naphthalene 2. dehydrocyclization of 1-(p-tolyl)-2-methylbutane (MB) to produce 2,6-dimethylnaphthalene 3. esterification of neopentyl glycol (NPG) with different carboxylic acids to produce monoesters 4. skeletal isomerization of 1-pentene to produce 2-methyl-1-butene and 2-methyl-2-butene The results of initial- and integral-rate experiments of n-butylbenzene dehydrocyclization over selfmade chromia/alumina catalyst were applied when investigating reaction 2. Reaction 2 was performed using commercial chromia/alumina of different acidity, platina on silica and vanadium/calcium/alumina as catalysts. On all catalysts used for the dehydrocyclization, major reactions were fragmentation of MB and 1-(p-tolyl)-2-methylbutenes (MBes), dehydrogenation of MB, double bond transfer, hydrogenation and 1,6-cyclization of MBes. Minor reactions were 1,5-cyclization of MBes and methyl group fragmentation of 1,6- cyclization products. Esterification reactions of NPG were performed using three different carboxylic acids: propionic, isobutyric and 2-ethylhexanoic acid. Commercial heterogeneous gellular (Dowex 50WX2), macroreticular (Amberlyst 15) type resins and homogeneous para-toluene sulfonic acid were used as catalysts. At first NPG reacted with carboxylic acids to form corresponding monoester and water. Then monoester esterified with carboxylic acid to form corresponding diester. In disproportionation reaction two monoester molecules formed NPG and corresponding diester. All these three reactions can attain equilibrium. Concerning esterification, water was removed from the reactor in order to prevent backward reaction. Skeletal isomerization experiments of 1-pentene were performed over HZSM-22 catalyst. Isomerization reactions of three different kind were detected: double bond, cis-trans and skeletal isomerization. Minor side reaction were dimerization and fragmentation. Monomolecular and bimolecular reaction mechanisms for skeletal isomerization explained experimental results almost equally well. Pseudohomogeneous kinetic parameters of reactions 1 and 2 were estimated by usual least squares fitting. Concerning reactions 3 and 4 kinetic parameters were estimated by the leastsquares method, but also the possible cross-correlation and identifiability of parameters were determined using Markov chain Monte Carlo (MCMC) method. Finally using MCMC method, the estimation of model parameters and predictions were performed according to the Bayesian paradigm. According to the fitting results suggested reaction mechanisms explained experimental results rather well. When the possible cross-correlation and identifiability of parameters (Reactions 3 and 4) were determined using MCMC method, the parameters identified well, and no pathological cross-correlation could be seen between any parameter pair.
Resumo:
Gasification offers an environmentally friendly alternative for conventional combustion enabling the use of low grade and troublesome fuel such as municipal waste. While combustion converts fuel directly into thermal energy and noxious gases, gasification thermally converts fuel into gas that can be used in multiple applications. The purpose of this work is to get to know the gasification as a phenomenon and examine the kinetics of gasification. The main interest is in the reaction rates of the most important gasification reactions - water-gas, Boudouard and shift reaction. Reaction rate correlations found in the scientific articles are examined in atmospheric pressure in different temperatures.
Resumo:
This thesis presents a three-dimensional, semi-empirical, steady state model for simulating the combustion, gasification, and formation of emissions in circulating fluidized bed (CFB) processes. In a large-scale CFB furnace, the local feeding of fuel, air, and other input materials, as well as the limited mixing rate of different reactants produce inhomogeneous process conditions. To simulate the real conditions, the furnace should be modelled three-dimensionally or the three-dimensional effects should be taken into account. The only available methods for simulating the large CFB furnaces three-dimensionally are semi-empirical models, which apply a relatively coarse calculation mesh and a combination of fundamental conservation equations, theoretical models and empirical correlations. The number of such models is extremely small. The main objective of this work was to achieve a model which can be applied to calculating industrial scale CFB boilers and which can simulate all the essential sub-phenomena: fluid dynamics, reactions, the attrition of particles, and heat transfer. The core of the work was to develop the model frame and the required sub-models for determining the combustion and sorbent reactions. The objective was reached, and the developed model was successfully used for studying various industrial scale CFB boilers combusting different types of fuel. The model for sorbent reactions, which includes the main reactions for calcitic limestones, was applied for studying the new possible phenomena occurring in the oxygen-fired combustion. The presented combustion and sorbent models and principles can be utilized in other model approaches as well, including other empirical and semi-empirical model approaches, and CFD based simulations. The main achievement is the overall model frame which can be utilized for the further development and testing of new sub-models and theories, and for concentrating the knowledge gathered from the experimental work carried out at bench scale, pilot scale and industrial scale apparatus, and from the computational work performed by other modelling methods.
Resumo:
Traditionally limestone has been used for the flue gas desulfurization in fluidized bed combustion. Recently, several studies have been carried out to examine the use of limestone in applications which enable the removal of carbon dioxide from the combustion gases, such as calcium looping technology and oxy-fuel combustion. In these processes interlinked limestone reactions occur but the reaction mechanisms and kinetics are not yet fully understood. To examine these phenomena, analytical and numerical models have been created. In this work, the limestone reactions were studied with aid of one-dimensional numerical particle model. The model describes a single limestone particle in the process as a function of time, the progress of the reactions and the mass and energy transfer in the particle. The model-based results were compared with experimental laboratory scale BFB results. It was observed that by increasing the temperature from 850 °C to 950 °C the calcination was enhanced but the sulfate conversion was no more improved. A higher sulfur dioxide concentration accelerated the sulfation reaction and based on the modeling, the sulfation is first order with respect to SO2. The reaction order of O2 seems to become zero at high oxygen concentrations.
Resumo:
Oxy-fuel combustion in a circulating fluidized bed (CFB) boiler appears to be a promising option for capturing CO2 in power plants. Oxy-fuel combustion is based on burning of fuel in the mixture of oxygen and re-circulated flue gas instead of air. Limestone (CaCO3) is typically used for capturing of SO2 in CFB boilers where limestone calcines to calcium oxide (CaO). Because of high CO2 concentration in oxy-fuel combustion, calcination reaction may be hindered or carbonation, the reverse reaction of calcination, may occur. Carbonation of CaO particles can cause problems especially in the circulation loop of a CFB boiler where temperature level is lower than in the furnace. The aim of the thesis was to examine carbonation of CaO in a fluidized bed heat exchanger of a CFB boiler featuring oxy-fuel combustion. The calculations and analyzing were based on measurement data from an oxy-fuel pilot plant and on 0-dimensional (0D) gas balance of a fluidized bed heat exchanger. Additionally, the objective was to develop a 1-dimensional (1D) model of a fluidized bed heat exchanger by searching a suitable pre-exponential factor for a carbonation rate constant. On the basis of gas measurement data and the 0D gas balance, it was found that the amount of fluidization gas decreased as it flew through the fluidized bed heat exchanger. Most likely the reason for this was carbonation of CaO. It was discovered that temperature has a promoting effect on the reaction rate of carbonation. With the 1D model, a suitable pre-exponential factor for the equation of carbonation rate constant was found. However, during measurements there were several uncertainties, and in the calculations plenty of assumptions were made. Besides, the temperature level in the fluidized bed heat exchanger was relatively low during the measurements. Carbonation should be considered when fluidized bed heat exchangers and the capacity of related fans are designed for a CFB boiler with oxy-fuel combustion.
Resumo:
A rapidly growing gaming industry, which specializes on PC, console, online and other games, attracts attention of investors and analysts, who try to understand what drives changes of the gaming industry companies’ stock prices. This master thesis shows the evidence that, besides long-established types of events (M&A and dividend payments), the companies’ stock price changes depend on industry-specific events. I analyzed specific for gaming industry events - game releases with respect to its subdivisions: new games-sequels, games ratings and subdivision according to a developer of a game (self-developed by publisher or outsourced). The master thesis analyzes stock prices of 55 companies from gaming industry from all over the world. The research period covers 5 year, spreading from April 2008 to April 2013. Executed with an event study method, results of the research show that all the analyzed events types have significant influence on the stock prices of the gaming industry companies. The current master thesis suggests that acquisitions in the industry affect positively bidders’ and targets’ stock prices. Mergers events cause positive stock price reactions as well. But dividends payments and game releases events influence negatively on the stock prices. Game releases’ effect is up to -2.2% of cumulative average abnormal return (CAAR) drop during the first ten days after the game releases. Having researched different kinds of events and identified the direction of their impact, the current paper can be of high value for investors, seeking profits in the gaming industry, and other interested parties.
Resumo:
The development of carbon capture and storage (CCS) has raised interest towards novel fluidised bed (FB) energy applications. In these applications, limestone can be utilized for S02 and/or CO2 capture. The conditions in the new applications differ from the traditional atmospheric and pressurised circulating fluidised bed (CFB) combustion conditions in which the limestone is successfully used for SO2 capture. In this work, a detailed physical single particle model with a description of the mass and energy transfer inside the particle for limestone was developed. The novelty of this model was to take into account the simultaneous reactions, changing conditions, and the effect of advection. Especially, the capability to study the cyclic behaviour of limestone on both sides of the calcination-carbonation equilibrium curve is important in the novel conditions. The significances of including advection or assuming diffusion control were studied in calcination. Especially, the effect of advection in calcination reaction in the novel combustion atmosphere was shown. The model was tested against experimental data; sulphur capture was studied in a laboratory reactor in different fluidised bed conditions. Different Conversion levels and sulphation patterns were examined in different atmospheres for one limestone type. The Conversion curves were well predicted with the model, and the mechanisms leading to the Conversion patterns were explained with the model simulations. In this work, it was also evaluated whether the transient environment has an effect on the limestone behaviour compared to the averaged conditions and in which conditions the effect is the largest. The difference between the averaged and transient conditions was notable only in the conditions which were close to the calcination-carbonation equilibrium curve. The results of this study suggest that the development of a simplified particle model requires a proper understanding of physical and chemical processes taking place in the particle during the reactions. The results of the study will be required when analysing complex limestone reaction phenomena or when developing the description of limestone behaviour in comprehensive 3D process models. In order to transfer the experimental observations to furnace conditions, the relevant mechanisms that take place need to be understood before the important ones can be selected for 3D process model. This study revealed the sulphur capture behaviour under transient oxy-fuel conditions, which is important when the oxy-fuel CFB process and process model are developed.
Resumo:
In photosynthesis, light energy is converted to chemical energy, which is consumed for carbon assimilation in the Calvin-Benson-Bassham (CBB) cycle. Intensive research has significantly advanced the understanding of how photosynthesis can survive in the ever-changing light conditions. However, precise details concerning the dynamic regulation of photosynthetic processes have remained elusive. The aim of my thesis was to specify some molecular mechanisms and interactions behind the regulation of photosynthetic reactions under environmental fluctuations. A genetic approach was employed, whereby Arabidopsis thaliana mutants deficient in specific photosynthetic protein components were subjected to adverse light conditions and assessed for functional deficiencies in the photosynthetic machinery. I examined three interconnected mechanisms: (i) auxiliary functions of PsbO1 and PsbO2 isoforms in the oxygen evolving complex of photosystem II (PSII), (ii) the regulatory function of PGR5 in photosynthetic electron transfer and (iii) the involvement of the Calcium Sensing Receptor CaS in photosynthetic performance. Analysis of photosynthetic properties in psbo1 and psbo2 mutants demonstrated that PSII is sensitive to light induced damage when PsbO2, rather than PsbO1, is present in the oxygen evolving complex. PsbO1 stabilizes PSII more efficiently compared to PsbO2 under light stress. However, PsbO2 shows a higher GTPase activity compared to PsbO1, and plants may partially compensate the lack of PsbO1 by increasing the rate of the PSII repair cycle. PGR5 proved vital in the protection of photosystem I (PSI) under fluctuating light conditions. Biophysical characterization of photosynthetic electron transfer reactions revealed that PGR5 regulates linear electron transfer by controlling proton motive force, which is crucial for the induction of the photoprotective non-photochemical quenching and the control of electron flow from PSII to PSI. I conclude that PGR5 controls linear electron transfer to protect PSI against light induced oxidative damage. I also found that PGR5 physically interacts with CaS, which is not needed for photoprotection of PSII or PSI in higher plants. Rather, transcript profiling and quantitative proteomic analysis suggested that CaS is functionally connected with the CBB cycle. This conclusion was supported by lowered amounts of specific calciumregulated CBB enzymes in cas mutant chloroplasts and by slow electron flow to PSI electron acceptors when leaves were reilluminated after an extended dark period. I propose that CaS is required for calcium regulation of the CBB cycle during periods of darkness. Moreover, CaS may also have a regulatory role in the activation of chloroplast ATPase. Through their diverse interactions, components of the photosynthetic machinery ensure optimization of light-driven electron transport and efficient basic production, while minimizing the harm caused by light induced photodamage.
Resumo:
Gasification of biomass is an efficient method process to produce liquid fuels, heat and electricity. It is interesting especially for the Nordic countries, where raw material for the processes is readily available. The thermal reactions of light hydrocarbons are a major challenge for industrial applications. At elevated temperatures, light hydrocarbons react spontaneously to form higher molecular weight compounds. In this thesis, this phenomenon was studied by literature survey, experimental work and modeling effort. The literature survey revealed that the change in tar composition is likely caused by the kinetic entropy. The role of the surface material is deemed to be an important factor in the reactivity of the system. The experimental results were in accordance with previous publications on the subject. The novelty of the experimental work lies in the used time interval for measurements combined with an industrially relevant temperature interval. The aspects which are covered in the modeling include screening of possible numerical approaches, testing of optimization methods and kinetic modelling. No significant numerical issues were observed, so the used calculation routines are adequate for the task. Evolutionary algorithms gave a better performance combined with better fit than the conventional iterative methods such as Simplex and Levenberg-Marquardt methods. Three models were fitted on experimental data. The LLNL model was used as a reference model to which two other models were compared. A compact model which included all the observed species was developed. The parameter estimation performed on that model gave slightly impaired fit to experimental data than LLNL model, but the difference was barely significant. The third tested model concentrated on the decomposition of hydrocarbons and included a theoretical description of the formation of carbon layer on the reactor walls. The fit to experimental data was extremely good. Based on the simulation results and literature findings, it is likely that the surface coverage of carbonaceous deposits is a major factor in thermal reactions.