17 resultados para Conventional process
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The changing business environment demands that chemical industrial processes be designed such that they enable the attainment of multi-objective requirements and the enhancement of innovativedesign activities. The requirements and key issues for conceptual process synthesis have changed and are no longer those of conventional process design; there is an increased emphasis on innovative research to develop new concepts, novel techniques and processes. A central issue, how to enhance the creativity of the design process, requires further research into methodologies. The thesis presentsa conflict-based methodology for conceptual process synthesis. The motivation of the work is to support decision-making in design and synthesis and to enhance the creativity of design activities. It deals with the multi-objective requirements and combinatorially complex nature of process synthesis. The work is carriedout based on a new concept and design paradigm adapted from Theory of InventiveProblem Solving methodology (TRIZ). TRIZ is claimed to be a `systematic creativity' framework thanks to its knowledge based and evolutionary-directed nature. The conflict concept, when applied to process synthesis, throws new lights on design problems and activities. The conflict model is proposed as a way of describing design problems and handling design information. The design tasks are represented as groups of conflicts and conflict table is built as the design tool. The general design paradigm is formulated to handle conflicts in both the early and detailed design stages. The methodology developed reflects the conflict nature of process design and synthesis. The method is implemented and verified through case studies of distillation system design, reactor/separator network design and waste minimization. Handling the various levels of conflicts evolve possible design alternatives in a systematic procedure which consists of establishing an efficient and compact solution space for the detailed design stage. The approach also provides the information to bridge the gap between the application of qualitative knowledge in the early stage and quantitative techniques in the detailed design stage. Enhancement of creativity is realized through the better understanding of the design problems gained from the conflict concept and in the improvement in engineering design practice via the systematic nature of the approach.
Resumo:
Tämä diplomityö tehtiin Vihdin Vesihuoltolaitoksen Nummelan jäteveden puhdistamolle. Työssä tutkittiin typenpoistoa kunnallisista jätevesistä membraanibioreaktorin (MBR) avulla. MBR:ssä yhdistyvät perinteinen aktiivilieteprosessi ja kalvosuodatus. Työn tavoite oli päästä yli 95 % typenpoistoon. Aluksi typenpoisto oli yli 80 %, kun pilot-mittakaavan MBR-laitosta operoitiin perinteisen prosessin parametrein. Typenpoistoa onnistuttiin tehostamaan nostamalla nitraattipitoisen palautuslietteen kierrätystä prosessin alkupäähän (1600 L/h) ja lisäämällä aktiivista biomassaa reaktorissa. Yli 90 % typenpoisto edellytti myös pidempää viipymäaikaa (noin kaksinkertainen perinteiseen prosessiin verrattuna). Tutkimuksessa päästiin parhaimmillaan jopa 95 % typenpoistumaan operoimalla laitteistoa pienellä typpikuormalla (0,1 kg/vrk) ja alhaisemmalla lietepitoisuudella (10 g/L). Typpikuorman noustessa (0,3 kg/vrk) typenpoistoteho laski. Tätä onnistuttiin parantamaan (yli 90 %) nostamalla biomassan määrää reaktorissa (15 g/L). Hyvän typenpoiston saavuttaminen edellytti myös suurempaa metanolin ja hapen syöttöä.
Resumo:
The conventional activated sludge processes (CAS) for the treatment of municipal wastewater are going to be outdated gradually due to more stringent environmental protection laws and regulations. The Membrane bioreactors (MBRs) are the most promising modern technology widely accepted in the world of wastewater treatment due to their highly pronounced features such as high quality effluent, less foot print and working under high MLSS concentration. This research project was carried out to investigate the feasibility and effectiveness of MBR technology compare to the CAS process based on the scientific facts and results. The pilot scale MBR pilot plant was run for more than 150 days and the analysis results were evaluated. The prime focus of the project was to evaluate the correlation of permeate flux under different operating MLSS concentrations. The permeate flux was found almost constant regardless of variations in MLSS concentrations. The removal of micropollutant such as heavy metals, PCPPs, PFCs, steroidal hormones was also studied. The micropollutant removal performance of MBR process was found relatively effective than CAS process. Furthermore, the compatibility of submerged membranes within the bioreactor had truly reduced the process footprint.
Resumo:
The accumulation of aqueous pollutants is becoming a global problem. The search for suitable methods and/or combinations of water treatment processes is a task that can slow down and stop the process of water pollution. In this work, the method of wet oxidation was considered as an appropriate technique for the elimination of the impurities present in paper mill process waters. It has been shown that, when combined with traditional wastewater treatment processes, wet oxidation offers many advantages. The combination of coagulation and wet oxidation offers a new opportunity for the improvement of the quality of wastewater designated for discharge or recycling. First of all, the utilization of coagulated sludge via wet oxidation provides a conditioning process for the sludge, i.e. dewatering, which is rather difficult to carry out with untreated waste. Secondly, Fe2(SO4)3, which is employed earlier as a coagulant, transforms the conventional wet oxidation process into a catalytic one. The use of coagulation as the post-treatment for wet oxidation can offer the possibility of the brown hue that usually accompanies the partial oxidation to be reduced. As a result, the supernatant is less colored and also contains a rather low amount of Fe ions to beconsidered for recycling inside mills. The thickened part that consists of metal ions is then recycled back to the wet oxidation system. It was also observed that wet oxidation is favorable for the degradation of pitch substances (LWEs) and lignin that are present in the process waters of paper mills. Rather low operating temperatures are needed for wet oxidation in order to destruct LWEs. The oxidation in the alkaline media provides not only the faster elimination of pitch and lignin but also significantly improves the biodegradable characteristics of wastewater that contains lignin and pitch substances. During the course of the kinetic studies, a model, which can predict the enhancements of the biodegradability of wastewater, was elaborated. The model includes lumped concentrations suchas the chemical oxygen demand and biochemical oxygen demand and reflects a generalized reaction network of oxidative transformations. Later developments incorporated a new lump, the immediately available biochemical oxygen demand, which increased the fidelity of the predictions made by the model. Since changes in biodegradability occur simultaneously with the destruction of LWEs, an attempt was made to combine these two facts for modeling purposes.
Resumo:
Tässä diplomityössä tehtiin käyttäjän opas kehittyneelle prosessisimulointiohjelmistolle APROS 5. Opas on osa VTT Energialle tehtävää APROS 5 käyttäjän koulutuspakettia, joka julkaistaan myöhemmin CD-ROM -muotoisena. Prosessisimulointiohjelmistoa AAPROS 5 voidaan käyttää termohydraulisten prosessien, automaatiopiirien ja sähköjärjestelmien mallinnuksessa. Ohjelma sisältää myös neutroniikkamallin ydinreaktorin käyttäytymisen mallintamiseksi. APROS:in aikaisemmilla UNIX-ympäristössä toimivilla versioilla on toteutettu useita ydinvoimalaitosten turvallisuustutkimukseen liittyviä analyysejä ja sekä ydinvoimalaitosten että konventionaalisten voimalaitosten koulutussimulaattoreita. APROS 5 toimii Windows NT -ympäristössä ja on oleellisesti erilainen käyttää kuin aikaisemmat versiot. Tämän myötä syntyi tarve uudelle käyttäjän oppaalle. Käyttäjän oppaassa esitetään APROS 5:n tärkeimmät toiminnot, mallinnuksen periaatteet ja termohydraulisten ja neutroniikan ratkaisumallit. Lisäksi oppaassa esitetään esimerkki, jossa mallinnetaan yksinkertaistettu VVER-440 -tyyppisen ydinvoimalaitoksen primääripiiri. Yksityiskohtaisempaa tietoa ohjelmistosta on saatavilla APROS 5 -dokumentaatiosta.
Resumo:
The structural change of society from product-based business to service- and further to need-based business has caused the fact that work for environmental issues has spread from conventional factories and environmentally harmful production to concern services and offices as well. Almost every company has an office, so a relatively small environmental burden caused by an individual office grows remarkable already at the state level and globally even more. Motivation to work for environmental issues in an individual office could be challenging even without the fact that wasted environmental impacts bound also wasted costs. Besides cost savings, a concretely greener image of a company has its value in the B2Cas well as in the B2B-field. Consumers and clients are more and more conscious of environmental issues and demand concrete actions instead of speeches, good thoughts and meaningless certifications. Internal work for environmental issues at a strategy level is not sufficient, so operational environmental management is needed for changing old practices. This research is about the effects of operative environmental management on the greening process of an office-based business. The research is outlined to concern the operative work in the office including field sales. Target was to concretely lower the environmental impacts of Lyreco Finland and to find cost savings directly by changing the operative practices in the office and also indirectly by affecting the level of environmental knowledge of the personnel. During the greening process, the aim was also to create concrete arguments for marketing as well. The circle of greening process, which was especially created for this diploma work, was used as a method. The circle divides a year to themes and sections separated by factors of environmental impacts. Separation is based on Brett Wills’ thoughts of seven green wastes (Wills, Brett. The Green Intensions. 2009) and follows it uneasily. The circle aimed at ensuring evolutionary growth of knowledge instead of being revolutionary in the changing process. Committing personnel to the process from its start by asking ideas from them and giving them clear directions was an important part of the research of operative management. Because of working from distance, communication with personnel was operated by frequent training days and weekly greening notes via emails and intranet. Also availability for communication was an important task because of the telecommuting. Research results of this work show that operative environmental management in an officebased business today is mostly management of change. When the strategic environmental friendliness is taken into a concrete level, the most important individual factor is motivating the operating personnel. Research shows that evolutionary change is found being an efficient way to make a change. Also understanding one´s own impact on the environmental burden and on the whole greening process clearly motivates the personnel. Results show that in the operative realization of the greening process, clear directions of new working practices, being as concrete as possible, and committing personnel to follow them make the process more effective. The operative environmental management and the cycle of the greening process decrease the environmental burden and save costs. The concrete results could be used as believable arguments in marketing and therefore exploited in communication with interest groups. Commitment of the management is also one of the key factors of success in the greening process. In this research, changes in the business field by a company trade took the focus of the management away from the greening process and made the process more inefficient by decreasing the amount of training days. The circle of greening process will be used as a tool in the future, as well, and therefore it will help observe environmental impacts of a company and increase sustainable development. Commitment of management to the evolutionary environmental work helps the operating personnel lower environmental impacts, decrease costs and build a concretely greener image.
Resumo:
Advanced oxidation processes (AOPs) have been studied and developed to suffice the effective removal of refractory and toxic compounds in polluted water. The quality and cost of wastewater treatment need improvements, and electric discharge technology has a potential to make a significant difference compared to other established AOPs based on energy efficiency. The generation of active oxidant species such as ozone and hydroxyl radicals by high voltage discharge is a relatively new technology for water treatment. Gas-phase pulsed corona discharge (PCD), where a treated aqueous solution is dispersed between corona-producing electrodes free of the dielectric barriers, was developed as an alternative approach to the problem. The short living radicals and ozone formed in the gas phase and at the gas-liquid interface react with dissolved impurities. PCD equipment has a relatively simple configuration, and with the reactor in an enclosed compartment, it is insensitive towards gas humidity and does not need the gas transport. In this thesis, PCD was used to study and evaluate the energy efficiency for degrading various organic compounds, as well as the chemistry of the oxidation products formed. The experiments investigate the aqueous oxidation of phenol, humic substances, pharmaceutical compounds (paracetamol, ibuprofen, indomethacin, salicylic acids, -estradiol), as well as lignin degradation and transformation to aldehydes. The study aims to establish the influence of initial concentration of the target pollutant, the pulsed discharge parameters, gas phase composition and the pH on the oxidation kinetics and the efficiency. Analytical methods to measure the concentrations of the target compounds and their by-products include HPLC, spectrophotometry, TOC and capillary electrophoresis. The results of the research included in this summary are presented in the attached publications and manuscripts accepted for publication. Pulsed corona discharge proved to be highly effective in oxidizing each of the target compounds, surpassing the closest competitor, conventional ozonation. The increase in oxidation efficiencies for some compounds in oxygen media and at lower pulse repetition frequencies shows a significant role of ozone. The role of the ·OH radicals was established in the surface reactions. The main oxidation products, formation of nitrates, and the lignin transformation were quantified. A compound specific approach is suggested for optimization of the PCD parameters that have the most significant impact on the oxidation energy efficiency because of the different characteristics and responses of the target compound to the oxidants, as well as different admixtures that are present in the wastewater. Further studies in the method’s safety (nitration and nitrosation of organic compounds, nitrite and nitrate formation enhancement) are needed for promoting the method.
Resumo:
Although the concept of multi-products biorefinery provides an opportunity to meet the future demands for biofuels, biomaterials or chemicals, it is not assured that its implementation would improve the profitability of kraft pulp mills. The attractiveness will depend on several factors such as mill age and location, government incentives, economy of scale, end user requirements, and how much value can be added to the new products. In addition, the effective integration of alternative technologies is not straightforward and has to be carefully studied. In this work, detailed balances were performed to evaluate possible impacts that lignin removal, hemicelluloses recovery prior to pulping, torrefaction and pyrolysis of wood residues cause on the conventional mill operation. The development of mill balances was based on theoretical fundamentals, practical experience, literature review, personal communication with technology suppliers and analysis of mill process data. Hemicelluloses recovery through pre-hydrolysis of chips leads to impacts in several stages of the kraft process. Effects can be observed on the pulping process, wood consumption, black liquor properties and, inevitably, on the pulp quality. When lignin is removed from black liquor, it will affect mostly the chemical recovery operation and steam generation rate. Since mineral acid is used to precipitate the lignin, impacts on the mill chemical balance are also expected. A great advantage of processing the wood residues for additional income results from the fact that the pulping process, pulp quality and sales are not harmfully affected. For pulp mills interested in implementing the concept of multi-products biorefinery, this work has indicated possible impacts to be considered in a technical feasibility study.
Resumo:
This study combines several projects related to the flows in vessels with complex shapes representing different chemical apparata. Three major cases were studied. The first one is a two-phase plate reactor with a complex structure of intersecting micro channels engraved on one plate which is covered by another plain plate. The second case is a tubular microreactor, consisting of two subcases. The first subcase is a multi-channel two-component commercial micromixer (slit interdigital) used to mix two liquid reagents before they enter the reactor. The second subcase is a micro-tube, where the distribution of the heat generated by the reaction was studied. The third case is a conventionally packed column. However, flow, reactions or mass transfer were not modeled. Instead, the research focused on how to describe mathematically the realistic geometry of the column packing, which is rather random and can not be created using conventional computeraided design or engineering (CAD/CAE) methods. Several modeling approaches were used to describe the performance of the processes in the considered vessels. Computational fluid dynamics (CFD) was used to describe the details of the flow in the plate microreactor and micromixer. A space-averaged mass transfer model based on Fick’s law was used to describe the exchange of the species through the gas-liquid interface in the microreactor. This model utilized data, namely the values of the interfacial area, obtained by the corresponding CFD model. A common heat transfer model was used to find the heat distribution in the micro-tube. To generate the column packing, an additional multibody dynamic model was implemented. Auxiliary simulation was carried out to determine the position and orientation of every packing element in the column. This data was then exported into a CAD system to generate desirable geometry, which could further be used for CFD simulations. The results demonstrated that the CFD model of the microreactor could predict the flow pattern well enough and agreed with experiments. The mass transfer model allowed to estimate the mass transfer coefficient. Modeling for the second case showed that the flow in the micromixer and the heat transfer in the tube could be excluded from the larger model which describes the chemical kinetics in the reactor. Results of the third case demonstrated that the auxiliary simulation could successfully generate complex random packing not only for the column but also for other similar cases.
Resumo:
Environmental issues, including global warming, have been serious challenges realized worldwide, and they have become particularly important for the iron and steel manufacturers during the last decades. Many sites has been shut down in developed countries due to environmental regulation and pollution prevention while a large number of production plants have been established in developing countries which has changed the economy of this business. Sustainable development is a concept, which today affects economic growth, environmental protection, and social progress in setting up the basis for future ecosystem. A sustainable headway may attempt to preserve natural resources, recycle and reuse materials, prevent pollution, enhance yield and increase profitability. To achieve these objectives numerous alternatives should be examined in the sustainable process design. Conventional engineering work cannot address all of these substitutes effectively and efficiently to find an optimal route of processing. A systematic framework is needed as a tool to guide designers to make decisions based on overall concepts of the system, identifying the key bottlenecks and opportunities, which lead to an optimal design and operation of the systems. Since the 1980s, researchers have made big efforts to develop tools for what today is referred to as Process Integration. Advanced mathematics has been used in simulation models to evaluate various available alternatives considering physical, economic and environmental constraints. Improvements on feed material and operation, competitive energy market, environmental restrictions and the role of Nordic steelworks as energy supplier (electricity and district heat) make a great motivation behind integration among industries toward more sustainable operation, which could increase the overall energy efficiency and decrease environmental impacts. In this study, through different steps a model is developed for primary steelmaking, with the Finnish steel sector as a reference, to evaluate future operation concepts of a steelmaking site regarding sustainability. The research started by potential study on increasing energy efficiency and carbon dioxide reduction due to integration of steelworks with chemical plants for possible utilization of available off-gases in the system as chemical products. These off-gases from blast furnace, basic oxygen furnace and coke oven furnace are mainly contained of carbon monoxide, carbon dioxide, hydrogen, nitrogen and partially methane (in coke oven gas) and have proportionally low heating value but are currently used as fuel within these industries. Nonlinear optimization technique is used to assess integration with methanol plant under novel blast furnace technologies and (partially) substitution of coal with other reducing agents and fuels such as heavy oil, natural gas and biomass in the system. Technical aspect of integration and its effect on blast furnace operation regardless of capital expenditure of new operational units are studied to evaluate feasibility of the idea behind the research. Later on the concept of polygeneration system added and a superstructure generated with alternative routes for off-gases pretreatment and further utilization on a polygeneration system producing electricity, district heat and methanol. (Vacuum) pressure swing adsorption, membrane technology and chemical absorption for gas separation; partial oxidation, carbon dioxide and steam methane reforming for methane gasification; gas and liquid phase methanol synthesis are the main alternative process units considered in the superstructure. Due to high degree of integration in process synthesis, and optimization techniques, equation oriented modeling is chosen as an alternative and effective strategy to previous sequential modelling for process analysis to investigate suggested superstructure. A mixed integer nonlinear programming is developed to study behavior of the integrated system under different economic and environmental scenarios. Net present value and specific carbon dioxide emission is taken to compare economic and environmental aspects of integrated system respectively for different fuel systems, alternative blast furnace reductants, implementation of new blast furnace technologies, and carbon dioxide emission penalties. Sensitivity analysis, carbon distribution and the effect of external seasonal energy demand is investigated with different optimization techniques. This tool can provide useful information concerning techno-environmental and economic aspects for decision-making and estimate optimal operational condition of current and future primary steelmaking under alternative scenarios. The results of the work have demonstrated that it is possible in the future to develop steelmaking towards more sustainable operation.
Resumo:
Atomic Layer Deposition (ALD) is the technology of choice where very thin and highquality films are required. Its advantage is its ability to deposit dense and pinhole-free coatings in a controllable manner. It has already shown promising results in a range of applications, e.g. diffusion barrier coatings for OLED displays, surface passivation layers for solar panels. Spatial Atomic Layer Deposition (SALD) is a concept that allows a dramatic increase in ALD throughput. During the SALD process, the substrate moves between spatially separated zones filled with the respective precursor gases and reagents in such a manner that the exposure sequence replicates the conventional ALD cycle. The present work describes the development of a high-throughput ALD process. Preliminary process studies were made using an SALD reactor designed especially for this purpose. The basic properties of the ALD process were demonstrated using the wellstudied Al2O3 trimethyl aluminium (TMA)+H2O process. It was shown that the SALD reactor is able to deposit uniform films in true ALD mode. The ALD nature of the process was proven by demonstrating self-limiting behaviour and linear film growth. The process behaviour and properties of synthesized films were in good agreement with previous ALD studies. Issues related to anomalous deposition at low temperatures were addressed as well. The quality of the coatings was demonstrated by applying 20 nm of the Al2O3 on to polymer substrate and measuring its moisture barrier properties. The results of tests confirmed the superior properties of the coatings and their suitability for flexible electronics encapsulation. Successful results led to the development of a pilot scale roll-to-roll coating system. It was demonstrated that the system is able to deposit superior quality films with a water transmission rate of 5x10-6 g/m2day at a web speed of 0.25 m/min. That is equivalent to a production rate of 180 m2/day and can be potentially increased by using wider webs. State-of-art film quality, high production rates and repeatable results make SALD the technology of choice for manufacturing ultra-high barrier coatings for flexible electronics.
Resumo:
An exchange traded fund (ETF) is a financial instrument that tracks some predetermined index. Since their initial establishment in 1993, ETFs have grown in importance in the field of passive investing. The main reason for the growth of the ETF industry is that ETFs combine benefits of stock investing and mutual fund investing. Although ETFs resemble mutual funds in many ways, also many differences occur. In addition, ETFs not only differ from mutual funds but also differ among each other. ETFs can be divided into two categories, i.e. market capitalisation ETFs and fundamental (or strategic) ETFs, and further into subcategories depending on their fundament basis. ETFs are a useful tool for diversification especially for a long-term investor. Although the economic importance of ETFs has risen drastically during the past 25 years, the differences and risk-return characteristics of fundamental ETFs have yet been rather unstudied area. In effect, no previous research on market capitalisation and fundamental ETFs was found during the research process. For its part, this thesis seeks to fill this research gap. The studied data consist of 50 market capitalisation ETFs and 50 fundamental ETFs. The fundaments, on which the indices that the fundamental ETFs track, were not limited nor segregated into subsections. The two types of ETFs were studied at an aggregate level as two different research groups. The dataset ranges from June 2006 to December 2014 with 103 monthly observations. The data was gathered using Bloomberg Terminal. The analysis was conducted as an econometric performance analysis. In addition to other econometric measures, the methods that were used in the performance analysis included modified Value-at-Risk, modified Sharpe ratio and Treynor ratio. The results supported the hypothesis that passive market capitalisation ETFs outperform active fundamental ETFs in terms of risk-adjusted returns, though the difference is rather small. Nevertheless, when taking into account the higher overall trading costs of the fundamental ETFs, the underperformance gap widens. According to the research results, market capitalisation ETFs are a recommendable diversification instrument for a long-term investor. In addition to better risk-adjusted returns, passive ETFs are more transparent and the bases of their underlying indices are simpler than those of fundamental ETFs. ETFs are still a young financial innovation and hence data is scarcely available. On future research, it would be valuable to research the differences in risk-adjusted returns also between the subsections of fundamental ETFs.