41 resultados para Computer vision system

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on color difference evaluation has been active in recent thirty years. Several color difference formulas were developed for industrial applications. The aims of this thesis are to develop the color density which is denoted by comb g and to propose the color density based chromaticity difference formulas. Color density is derived from the discrimination ellipse parameters and color positions in the xy , xyY and CIELAB color spaces, and the color based chromaticity difference formulas are compared with the line element formulas and CIE 2000 color difference formulas. As a result of the thesis, color density represents the perceived color difference accurately, and it could be used to characterize a color by the attribute of perceived color difference from this color.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The review of intelligent machines shows that the demand for new ways of helping people in perception of the real world is becoming higher and higher every year. This thesis provides information about design and implementation of machine vision for mobile assembly robot. The work has been done as a part of LUT project in Laboratory of Intelligent Machines. The aim of this work is to create a working vision system. The qualitative and quantitative research were done to complete this task. In the first part, the author presents the theoretical background of such things as digital camera work principles, wireless transmission basics, creation of live stream, methods used for pattern recognition. Formulas, dependencies and previous research related to the topic are shown. In the second part, the equipment used for the project is described. There is information about the brands, models, capabilities and also requirements needed for implementation. Although, the author gives a description of LabVIEW software, its add-ons and OpenCV which are used in the project. Furthermore, one can find results in further section of considered thesis. They mainly represented by screenshots from cameras, working station and photos of the system. The key result of this thesis is vision system created for the needs of mobile assembly robot. Therefore, it is possible to see graphically what was done on examples. Future research in this field includes optimization of the pattern recognition algorithm. This will give less response time for recognizing objects. Presented by author system can be used also for further activities which include artificial intelligence usage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mottling is one of the key defects in offset-printing. Mottling can be defined as unwanted unevenness of print. In this work, diameter of a mottle spot is defined between 0.5-10.0 mm. There are several types of mottling, but the reason behind the problem is still not fully understood. Several commercial machine vision products for the evaluation of print unevenness have been presented. Two of these methods used in these products have been implemented in this thesis. The one is the cluster method and the other is the band-pass method. The properties of human vision system have been taken into account in the implementation of these two methods. An index produced by the cluster method is a weighted sum of the number of found spots, and an index produced by band-pass method is a weighted sum of coefficients of variations of gray-levels for each spatial band. Both methods produce larger indices for visually poor samples, so they can discern good samples from the poor ones. The difference between the indices for good and poor samples is slightly larger produced by the cluster method. 11 However, without the samples evaluated by human experts, the goodness of these results is still questionable. This comparison will be left to the next phase of the project.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The number of digital images has been increasing exponentially in the last few years. People have problems managing their image collections and finding a specific image. An automatic image categorization system could help them to manage images and find specific images. In this thesis, an unsupervised visual object categorization system was implemented to categorize a set of unknown images. The system is unsupervised, and hence, it does not need known images to train the system which needs to be manually obtained. Therefore, the number of possible categories and images can be huge. The system implemented in the thesis extracts local features from the images. These local features are used to build a codebook. The local features and the codebook are then used to generate a feature vector for an image. Images are categorized based on the feature vectors. The system is able to categorize any given set of images based on the visual appearance of the images. Images that have similar image regions are grouped together in the same category. Thus, for example, images which contain cars are assigned to the same cluster. The unsupervised visual object categorization system can be used in many situations, e.g., in an Internet search engine. The system can categorize images for a user, and the user can then easily find a specific type of image.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multispectral images are becoming more common in the field of remote sensing, computer vision, and industrial applications. Due to the high accuracy of the multispectral information, it can be used as an important quality factor in the inspection of industrial products. Recently, the development on multispectral imaging systems and the computational analysis on the multispectral images have been the focus of a growing interest. In this thesis, three areas of multispectral image analysis are considered. First, a method for analyzing multispectral textured images was developed. The method is based on a spectral cooccurrence matrix, which contains information of the joint distribution of spectral classes in a spectral domain. Next, a procedure for estimating the illumination spectrum of the color images was developed. Proposed method can be used, for example, in color constancy, color correction, and in the content based search from color image databases. Finally, color filters for the optical pattern recognition were designed, and a prototype of a spectral vision system was constructed. The spectral vision system can be used to acquire a low dimensional component image set for the two dimensional spectral image reconstruction. The data obtained by the spectral vision system is small and therefore convenient for storing and transmitting a spectral image.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis presents the calibration and comparison of two systems, a machine vision system that uses 3 channel RGB images and a line scanning spectral system. Calibration. is the process of checking and adjusting the accuracy of a measuring instrument by comparing it with standards. For the RGB system self-calibrating methods for finding various parameters of the imaging device were developed. Color calibration was done and the colors produced by the system were compared to the known colors values of the target. Software drivers for the Sony Robot were also developed and a mechanical part to connect a camera to the robot was also designed. For the line scanning spectral system, methods for the calibrating the alignment of the system and the measurement of the dimensions of the line scanned by the system were developed. Color calibration of the spectral system is also presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sensor-based robot control allows manipulation in dynamic environments with uncertainties. Vision is a versatile low-cost sensory modality, but low sample rate, high sensor delay and uncertain measurements limit its usability, especially in strongly dynamic environments. Force is a complementary sensory modality allowing accurate measurements of local object shape when a tooltip is in contact with the object. In multimodal sensor fusion, several sensors measuring different modalities are combined to give a more accurate estimate of the environment. As force and vision are fundamentally different sensory modalities not sharing a common representation, combining the information from these sensors is not straightforward. In this thesis, methods for fusing proprioception, force and vision together are proposed. Making assumptions of object shape and modeling the uncertainties of the sensors, the measurements can be fused together in an extended Kalman filter. The fusion of force and visual measurements makes it possible to estimate the pose of a moving target with an end-effector mounted moving camera at high rate and accuracy. The proposed approach takes the latency of the vision system into account explicitly, to provide high sample rate estimates. The estimates also allow a smooth transition from vision-based motion control to force control. The velocity of the end-effector can be controlled by estimating the distance to the target by vision and determining the velocity profile giving rapid approach and minimal force overshoot. Experiments with a 5-degree-of-freedom parallel hydraulic manipulator and a 6-degree-of-freedom serial manipulator show that integration of several sensor modalities can increase the accuracy of the measurements significantly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Monimutkaisissa ja muuttuvissa ympäristöissä työskentelevät robotit tarvitsevat kykyä manipuloida ja tarttua esineisiin. Tämä työ tutkii robottitarttumisen ja robottitartuntapis-teiden koneoppimisen aiempaa tutkimusta ja nykytilaa. Nykyaikaiset menetelmät käydään läpi, ja Le:n koneoppimiseen pohjautuva luokitin toteutetaan, koska se tarjoaa parhaan onnistumisprosentin tutkituista menetelmistä ja on muokattavissa sopivaksi käytettävissä olevalle robotille. Toteutettu menetelmä käyttää intensititeettikuvaan ja syvyyskuvaan po-hjautuvia ominaisuuksi luokitellakseen potentiaaliset tartuntapisteet. Tämän toteutuksen tulokset esitellään.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The recent emergence of low-cost RGB-D sensors has brought new opportunities for robotics by providing affordable devices that can provide synchronized images with both color and depth information. In this thesis, recent work on pose estimation utilizing RGBD sensors is reviewed. Also, a pose recognition system for rigid objects using RGB-D data is implemented. The implementation uses half-edge primitives extracted from the RGB-D images for pose estimation. The system is based on the probabilistic object representation framework by Detry et al., which utilizes Nonparametric Belief Propagation for pose inference. Experiments are performed on household objects to evaluate the performance and robustness of the system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis studies the use of machine vision in RDF quality assurance and manufacturing. Currently machine vision is used in recycling and material detection and some commer- cial products are available in the market. In this thesis an on-line machine vision system is proposed for characterizing particle size. The proposed machine vision system is based on the mapping between image segmenta- tion and the ground truth of the particle size. The results shows that the implementation of such machine vision system is feasible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Päätetyöhön epäillään liittyvän monenlaisia ongelmia. Eniten epäiltyjä ja käsiteltyjä ovat silmien rasitus- ja ärsytysoireet sekä päätetyön kuormittavuus ja näköergonomiset ongelmat. Näkemiseen ja silmiin liittyvät ongelmat näyttöpäätetyöskentelyssä ovat hyvin tavallisia. Niitä kutsutaan termillä Computer Vision Syndrome (CVS). Opinnäytetyömme tarkoituksena oli tutkia kuinka eri katsekulmat vaikuttavat näönrasitusoireisiin sekä olemassa oleviin näköjärjestelmän vikoihin. Kokeessa näyttöpääte sijoitettiin kolmeen eri katsekulmaan. Nämä kulmat olivat 15 astetta horisontaalilinjan yläpuolelle, horisontaalilinja sekä 15 astetta horisontaalilinjan alapuolelle. Tutkimus oli vertaileva ikäryhmien 20-39 ja 40-60-vuotiaat välillä. Opinnäytetyö on kvantitatiivinen. Tutkimusjoukko koostui 80 henkilöstä. VSQ- ja SSQ-kyselylomakkeilla ja mittauksilla saatu aineisto analysoitiin SPSS-ohjelmassa Wilcoxonin merkkitestillä ja Mann-Whitneyn U-testillä. Koko tutkimusjoukon SSQ-oireiden keskiarvoja tarkastellessa voitiin oireiden todeta voimistuneen tehtävän aikana tilastollisesti merkitsevästi. + 15 asteen katsekulmassa havaittiin oireiden voimistumista eniten. SSQ-oireiden jakaminen eri ryhmiin toi esiin tilastollisesti merkitseviä eroja varsinkin silmänrasitusoireiden kohdalla. - 15 asteen katsekulma aiheutti vähiten oireiden arvojen kasvua tehtävän aikana silmänrasitus- ja disorientaatio-oireiden ryhmissä. Tarkasteltaessa koko joukon silmänrasitus- ja disorientaatio-oireita voidaan päätellä näyttöpäätetyön aiheuttavan rasitusoireiden lisääntymistä, koska merkitsevyystaso näissä oli tilastollisesti erittäin merkitsevä. Sekä kokonaisuudessaan että oireryhmittäin oli huomionarvoista, että 20-40-vuotiaat kokivat näyttöpäätetyön rasittavan enemmän. Mittaustulosten perusteella voidaan sanoa, että akkommodaatiolaajuus ja konvergenssikyky olivat merkitsevästi heikompia tehtävän jälkeen. Kyynelfilmin repeämisajan keskiarvo kokeen jälkeen koko tutkimusjoukolla oli normaaliarvoa alhaisempi. Yhteistyökumppanimme voi hyödyntää työmme tuloksia laajemmassa tutkimuksessa. Opinnäytetyömme tukee ammattiosaamistamme toimiessamme näönhuollon asiantuntijoina.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Laajojen pintojen kuvaaminen rajoitetussa työskentelytilassa riittävällä kuvatarkkuudella voi olla vaikeaa. Kuvaaminen on suoritettava osissa ja osat koottava saumattomaksi kokonaisnäkymäksi eli mosaiikkikuvaksi. Kuvauslaitetta käsin siirtelevän käyttäjän on saatava välitöntä palautetta, jotta mosaiikkiin ei jäisi aukkoja ja työ olisi nopeaa. Työn tarkoituksena oli rakentaa pieni, kannettava ja tarkka kuvauslaite paperi- ja painoteollisuuden tarpeisiin sekä kehittää palautteen antamiseen menetelmä, joka koostaaja esittää karkeaa mosaiikkikuvaa tosiajassa. Työssä rakennettiin kaksi kuvauslaitetta: ensimmäinen kuluttajille ja toinen teollisuuteen tarkoitetuista osista. Kuvamateriaali käsiteltiin tavallisella pöytätietokoneella. Videokuvien välinen liike laskettiin yksinkertaisella seurantamenetelmällä ja mosaiikkikuvaa koottiin kameroiden kuvanopeudella. Laskennallista valaistuksenkorjausta tutkittiin ja kehitetty menetelmä otettiin käyttöön. Ensimmäisessä kuvauslaitteessa on ongelmia valaistuksen ja linssivääristymien kanssa tuottaen huonolaatuisia mosaiikkikuvia. Toisessa kuvauslaitteessa nämä ongelmat on korjattu. Seurantamenetelmä toimii hyvin ottaen huomioon sen yksinkertaisuuden ja siihen ehdotetaan monia parannuksia. Työn tulokset osoittavat, että tosiaikainen mosaiikkikuvan koostaminen megapikselin kuvamateriaalista on mahdollista kuluttajille tarkoitetulla tietokonelaitteistolla.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optisella merkintunnistuksella on tärkeä rooli nykypäivän automaatiossa. Optisen merkintunnistuksen eri sovellusalueet vaihtelevat dokumenttien tekstin tunnistamisesta ajoneuvojen tunnistamiseen ja erilaisten tuotanto- ja kokoonpanolinjojen automaatioon ja laadun tarkkailuun. Tässä työssä keskitytään optisen merkintunnistuksen käyttöön satamaliikenteessä. Työ jakaantuu kahteen osaan. Ensimmäisessä osassa esitellään satamien kannalta kaksi yleisintä ja samalla tärkeintä optisen merkintunnistuksen sovellusaluetta: rekisterikilpien tunnistus ja konttien tunnistus. Työn jälkimmäinen osa käsittelee junavaunujen tunnistamista optisen merkintunnistuksen avulla. Satamissa toimiva vaunukalusto ja niissä esiintyvät tunnisteet esitellään. Vaunujen tunnistamisen toteuttava konenäköjärjestelmä, sen vaativat laitteet sekä kuvankäsittelyn ja kuva-analyysin vaiheet käydään läpi. Kuva-analyysion jaettu työssä neljään päävaiheeseen: esikäsittely, segmentointi, piirreirrotus ja luokittelu. Kustakin vaiheesta esitetään useita eri menetelmiä, joiden käyttökelpoisuutta esitettyyn ongelmaan arvioidaan työn lopussa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multispectral images contain information from several spectral wavelengths and currently multispectral images are widely used in remote sensing and they are becoming more common in the field of computer vision and in industrial applications. Typically, one multispectral image in remote sensing may occupy hundreds of megabytes of disk space and several this kind of images may be received from a single measurement. This study considers the compression of multispectral images. The lossy compression is based on the wavelet transform and we compare the suitability of different waveletfilters for the compression. A method for selecting a wavelet filter for the compression and reconstruction of multispectral images is developed. The performance of the multidimensional wavelet transform based compression is compared to other compression methods like PCA, ICA, SPIHT, and DCT/JPEG. The quality of the compression and reconstruction is measured by quantitative measures like signal-to-noise ratio. In addition, we have developed a qualitative measure, which combines the information from the spatial and spectral dimensions of a multispectral image and which also accounts for the visual quality of the bands from the multispectral images.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is about detection of local image features. The research topic belongs to the wider area of object detection, which is a machine vision and pattern recognition problem where an object must be detected (located) in an image. State-of-the-art object detection methods often divide the problem into separate interest point detection and local image description steps, but in this thesis a different technique is used, leading to higher quality image features which enable more precise localization. Instead of using interest point detection the landmark positions are marked manually. Therefore, the quality of the image features is not limited by the interest point detection phase and the learning of image features is simplified. The approach combines both interest point detection and local description into one phase for detection. Computational efficiency of the descriptor is therefore important, leaving out many of the commonly used descriptors as unsuitably heavy. Multiresolution Gabor features has been the main descriptor in this thesis and improving their efficiency is a significant part. Actual image features are formed from descriptors by using a classifierwhich can then recognize similar looking patches in new images. The main classifier is based on Gaussian mixture models. Classifiers are used in one-class classifier configuration where there are only positive training samples without explicit background class. The local image feature detection method has been tested with two freely available face detection databases and a proprietary license plate database. The localization performance was very good in these experiments. Other applications applying the same under-lying techniques are also presented, including object categorization and fault detection.