12 resultados para Complex learning
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The aim of this thesis was to examine emotions in a web-based learning environment (WBLE). Theoretically, the thesis was grounded on the dimensional model of emotions. Four empirical studies were conducted. Study I focused on students’ anxiety and their self-efficacy in computer-using situations. Studies II and III examined the influence of experienced emotions on students’ collaborative visible and non-collaborative invisible activities and lurking in a WBLE. Study II also focused on the antecedents of the emotions students experience in a web-based learning environment. Study IV concentrated on clarifying the differences between emotions experienced in face-to-face and web-based collaborative learning. The results of these studies are reported in four original research articles published in scientific journals. The present studies demonstrate that emotions are important determinants of student behaviour in a web-based learning, and justify the conclusion that interactions on the web can and do have an emotional content. Based on the results of these empirical studies, it can be concluded that the emotions students experience during the web-based learning result mostly from the social interactions rather than from the technological context. The studies indicate that the technology itself is not the only antecedent of students’ emotional reactions in the collaborative web-based learning situations. However, the technology itself also exerted an influence on students’ behaviour. It was found that students’ computer anxiety was associated with their negative expectations of the consequences of using technology-based learning environments in their studies. Moreover, the results also indicated that student behaviours in a WBLE can be divided into three partially overlapping classes: i) collaborative visible ii) non-collaborative invisible activities, and iii) lurking. What is more, students’ emotions experienced during the web-based learning affected how actively they participated in such activities in the environment. Especially lurkers, i.e. students who seldom participated in discussions but frequently visited the online environment, experienced more negatively valenced emotions during the courses than did the other students. This result indicates that such negatively toned emotional experiences can make the lurking individuals less eager to participate in other WBLE courses in the future. Therefore, future research should also focus more precisely on the reasons that cause individuals to lurk in online learning groups, and the development of learning tasks that do not encourage or permit lurking or inactivity. Finally, the results from the study comparing emotional reactions in web-based and face-to-face collaborative learning indicated that the learning by means of web-based communication resulted in more affective reactivity when compared to learning in a face-to-face situation. The results imply that the students in the web-based learning group experienced more intense emotions than the students in the face-to-face learning group.The interpretations of this result are that the lack of means for expressing emotional reactions and perceiving others’ emotions increased the affectivity in the web-based learning groups. Such increased affective reactivity could, for example, debilitate individual’s learning performance, especially in complex learning tasks. Therefore, it is recommended that in the future more studies should be focused on the possibilities to express emotions in a text-based web environment to ensure better means for communicating emotions, and subsequently, possibly decrease the high level of affectivity. However, we do not yet know whether the use of means for communicating emotional expressions via the web (for example, “smileys” or “emoticons”) would be beneficial or disadvantageous in formal learning situations. Therefore, future studies should also focus on assessing how the use of such symbols as a means for expressing emotions in a text-based web environment would affect students’ and teachers’ behaviour and emotional state in web-based learning environments.
Resumo:
The thesis deals with the phenomenon of learning between organizations in innovation networks that develop new products, services or processes. Inter organizational learning is studied especially at the level of the network. The role of the network can be seen as twofold: either the network is a context for inter organizational learning, if the learner is something else than the network (organization, group, individual), or the network itself is the learner. Innovations are regarded as a primary source of competitiveness and renewal in organizations. Networking has become increasingly common particularly because of the possibility to extend the resource base of the organization through partnerships and to concentrate on core competencies. Especially in innovation activities, networks provide the possibility to answer the complex needs of the customers faster and to share the costs and risks of the development work. Networked innovation activities are often organized in practice as distributed virtual teams, either within one organization or as cross organizational co operation. The role of technology is considered in the research mainly as an enabling tool for collaboration and learning. Learning has been recognized as one important collaborative process in networks or as a motivation for networking. It is even more important in the innovation context as an enabler of renewal, since the essence of the innovation process is creating new knowledge, processes, products and services. The thesis aims at providing enhanced understanding about the inter organizational learning phenomenon in and by innovation networks, especially concentrating on the network level. The perspectives used in the research are the theoretical viewpoints and concepts, challenges, and solutions for learning. The methods used in the study are literature reviews and empirical research carried out with semi structured interviews analyzed with qualitative content analysis. The empirical research concentrates on two different areas, firstly on the theoretical approaches to learning that are relevant to innovation networks, secondly on learning in virtual innovation teams. As a result, the research identifies insights and implications for learning in innovation networks from several viewpoints on organizational learning. Using multiple perspectives allows drawing a many sided picture of the learning phenomenon that is valuable because of the versatility and complexity of situations and challenges of learning in the context of innovation and networks. The research results also show some of the challenges of learning and possible solutions for supporting especially network level learning.
Resumo:
Learning from demonstration becomes increasingly popular as an efficient way of robot programming. Not only a scientific interest acts as an inspiration in this case but also the possibility of producing the machines that would find application in different areas of life: robots helping with daily routine at home, high performance automata in industries or friendly toys for children. One way to teach a robot to fulfill complex tasks is to start with simple training exercises, combining them to form more difficult behavior. The objective of the Master’s thesis work was to study robot programming with visual input. Dynamic movement primitives (DMPs) were chosen as a tool for motion learning and generation. Assuming a movement to be a spring system influenced by an external force, making this system move, DMPs represent the motion as a set of non-linear differential equations. During the experiments the properties of DMP, such as temporal and spacial invariance, were examined. The effect of the DMP parameters, including spring coefficient, damping factor, temporal scaling, on the trajectory generated were studied.
Resumo:
This study was conducted in order to learn how companies’ revenue models will be transformed due to the digitalisation of its products and processes. Because there is still only a limited number of researches focusing solely on revenue models, and particularly on the revenue model change caused by the changes at the business environment, the topic was initially approached through the business model concept, which organises the different value creating operations and resources at a company in order to create profitable revenue streams. This was used as the base for constructing the theoretical framework for this study, used to collect and analyse the information. The empirical section is based on a qualitative study approach and multiple-case analysis of companies operating in learning materials publishing industry. Their operations are compared with companies operating in other industries, which have undergone comparable transformation, in order to recognise either similarities or contrasts between the cases. The sources of evidence are a literature review to find the essential dimensions researched earlier, and interviews 29 of managers and executives at 17 organisations representing six industries. Based onto the earlier literature and the empirical findings of this study, the change of the revenue model is linked with the change of the other dimen-sions of the business model. When one dimension will be altered, as well the other should be adjusted accordingly. At the case companies the transformation is observed as the utilisation of several revenue models simultaneously and the revenue creation processes becoming more complex.
Resumo:
The aim of this dissertation is to investigate if participation in business simulation gaming sessions can make different leadership styles visible and provide students with experiences beneficial for the development of leadership skills. Particularly, the focus is to describe the development of leadership styles when leading virtual teams in computer-supported collaborative game settings and to identify the outcomes of using computer simulation games as leadership training tools. To answer to the objectives of the study, three empirical experiments were conducted to explore if participation in business simulation gaming sessions (Study I and II), which integrate face-to-face and virtual communication (Study III and IV), can make different leadership styles visible and provide students with experiences beneficial for the development of leadership skills. In the first experiment, a group of multicultural graduate business students (N=41) participated in gaming sessions with a computerized business simulation game (Study III). In the second experiment, a group of graduate students (N=9) participated in the training with a ‘real estate’ computer game (Study I and II). In the third experiment, a business simulation gaming session was organized for graduate students group (N=26) and the participants played the simulation game in virtual teams, which were organizationally and geographically dispersed but connected via technology (Study IV). Each team in all experiments had three to four students and students were between 22 and 25 years old. The business computer games used for the empirical experiments presented an enormous number of complex operations in which a team leader needed to make the final decisions involved in leading the team to win the game. These gaming environments were interactive;; participants interacted by solving the given tasks in the game. Thus, strategy and appropriate leadership were needed to be successful. The training was competition-based and required implementation of leadership skills. The data of these studies consist of observations, participants’ reflective essays written after the gaming sessions, pre- and post-tests questionnaires and participants’ answers to open- ended questions. Participants’ interactions and collaboration were observed when they played the computer games. The transcripts of notes from observations and students dialogs were coded in terms of transactional, transformational, heroic and post-heroic leadership styles. For the data analysis of the transcribed notes from observations, content analysis and discourse analysis was implemented. The Multifactor Leadership Questionnaire (MLQ) was also utilized in the study to measure transformational and transactional leadership styles;; in addition, quantitative (one-way repeated measures ANOVA) and qualitative data analyses have been performed. The results of this study indicate that in the business simulation gaming environment, certain leadership characteristics emerged spontaneously. Experiences about leadership varied between the teams and were dependent on the role individual students had in their team. These four studies showed that simulation gaming environment has the potential to be used in higher education to exercise the leadership styles relevant in real-world work contexts. Further, the study indicated that given debriefing sessions, the simulation game context has much potential to benefit learning. The participants who showed interest in leadership roles were given the opportunity of developing leadership skills in practice. The study also provides evidence of unpredictable situations that participants can experience and learn from during the gaming sessions. The study illustrates the complex nature of experiences from the gaming environments and the need for the team leader and role divisions during the gaming sessions. It could be concluded that the experience of simulation game training illustrated the complexity of real life situations and provided participants with the challenges of virtual leadership experiences and the difficulties of using leadership styles in practice. As a result, the study offers playing computer simulation games in small teams as one way to exercise leadership styles in practice.
Resumo:
Monimutkaisissa ja muuttuvissa ympäristöissä työskentelevät robotit tarvitsevat kykyä manipuloida ja tarttua esineisiin. Tämä työ tutkii robottitarttumisen ja robottitartuntapis-teiden koneoppimisen aiempaa tutkimusta ja nykytilaa. Nykyaikaiset menetelmät käydään läpi, ja Le:n koneoppimiseen pohjautuva luokitin toteutetaan, koska se tarjoaa parhaan onnistumisprosentin tutkituista menetelmistä ja on muokattavissa sopivaksi käytettävissä olevalle robotille. Toteutettu menetelmä käyttää intensititeettikuvaan ja syvyyskuvaan po-hjautuvia ominaisuuksi luokitellakseen potentiaaliset tartuntapisteet. Tämän toteutuksen tulokset esitellään.
Resumo:
Biomedical natural language processing (BioNLP) is a subfield of natural language processing, an area of computational linguistics concerned with developing programs that work with natural language: written texts and speech. Biomedical relation extraction concerns the detection of semantic relations such as protein-protein interactions (PPI) from scientific texts. The aim is to enhance information retrieval by detecting relations between concepts, not just individual concepts as with a keyword search. In recent years, events have been proposed as a more detailed alternative for simple pairwise PPI relations. Events provide a systematic, structural representation for annotating the content of natural language texts. Events are characterized by annotated trigger words, directed and typed arguments and the ability to nest other events. For example, the sentence “Protein A causes protein B to bind protein C” can be annotated with the nested event structure CAUSE(A, BIND(B, C)). Converted to such formal representations, the information of natural language texts can be used by computational applications. Biomedical event annotations were introduced by the BioInfer and GENIA corpora, and event extraction was popularized by the BioNLP'09 Shared Task on Event Extraction. In this thesis we present a method for automated event extraction, implemented as the Turku Event Extraction System (TEES). A unified graph format is defined for representing event annotations and the problem of extracting complex event structures is decomposed into a number of independent classification tasks. These classification tasks are solved using SVM and RLS classifiers, utilizing rich feature representations built from full dependency parsing. Building on earlier work on pairwise relation extraction and using a generalized graph representation, the resulting TEES system is capable of detecting binary relations as well as complex event structures. We show that this event extraction system has good performance, reaching the first place in the BioNLP'09 Shared Task on Event Extraction. Subsequently, TEES has achieved several first ranks in the BioNLP'11 and BioNLP'13 Shared Tasks, as well as shown competitive performance in the binary relation Drug-Drug Interaction Extraction 2011 and 2013 shared tasks. The Turku Event Extraction System is published as a freely available open-source project, documenting the research in detail as well as making the method available for practical applications. In particular, in this thesis we describe the application of the event extraction method to PubMed-scale text mining, showing how the developed approach not only shows good performance, but is generalizable and applicable to large-scale real-world text mining projects. Finally, we discuss related literature, summarize the contributions of the work and present some thoughts on future directions for biomedical event extraction. This thesis includes and builds on six original research publications. The first of these introduces the analysis of dependency parses that leads to development of TEES. The entries in the three BioNLP Shared Tasks, as well as in the DDIExtraction 2011 task are covered in four publications, and the sixth one demonstrates the application of the system to PubMed-scale text mining.
Resumo:
Personalized medicine will revolutionize our capabilities to combat disease. Working toward this goal, a fundamental task is the deciphering of geneticvariants that are predictive of complex diseases. Modern studies, in the formof genome-wide association studies (GWAS) have afforded researchers with the opportunity to reveal new genotype-phenotype relationships through the extensive scanning of genetic variants. These studies typically contain over half a million genetic features for thousands of individuals. Examining this with methods other than univariate statistics is a challenging task requiring advanced algorithms that are scalable to the genome-wide level. In the future, next-generation sequencing studies (NGS) will contain an even larger number of common and rare variants. Machine learning-based feature selection algorithms have been shown to have the ability to effectively create predictive models for various genotype-phenotype relationships. This work explores the problem of selecting genetic variant subsets that are the most predictive of complex disease phenotypes through various feature selection methodologies, including filter, wrapper and embedded algorithms. The examined machine learning algorithms were demonstrated to not only be effective at predicting the disease phenotypes, but also doing so efficiently through the use of computational shortcuts. While much of the work was able to be run on high-end desktops, some work was further extended so that it could be implemented on parallel computers helping to assure that they will also scale to the NGS data sets. Further, these studies analyzed the relationships between various feature selection methods and demonstrated the need for careful testing when selecting an algorithm. It was shown that there is no universally optimal algorithm for variant selection in GWAS, but rather methodologies need to be selected based on the desired outcome, such as the number of features to be included in the prediction model. It was also demonstrated that without proper model validation, for example using nested cross-validation, the models can result in overly-optimistic prediction accuracies and decreased generalization ability. It is through the implementation and application of machine learning methods that one can extract predictive genotype–phenotype relationships and biological insights from genetic data sets.
Resumo:
Traditionally metacognition has been theorised, methodologically studied and empirically tested from the standpoint mainly of individuals and their learning contexts. In this dissertation the emergence of metacognition is analysed more broadly. The aim of the dissertation was to explore socially shared metacognitive regulation (SSMR) as part of collaborative learning processes taking place in student dyads and small learning groups. The specific aims were to extend the concept of individual metacognition to SSMR, to develop methods to capture and analyse SSMR and to validate the usefulness of the concept of SSMR in two different learning contexts; in face-to-face student dyads solving mathematical word problems and also in small groups taking part in inquiry-based science learning in an asynchronous computer-supported collaborative learning (CSCL) environment. This dissertation is comprised of four studies. In Study I, the main aim was to explore if and how metacognition emerges during problem solving in student dyads and then to develop a method for analysing the social level of awareness, monitoring, and regulatory processes emerging during the problem solving. Two dyads comprised of 10-year-old students who were high-achieving especially in mathematical word problem solving and reading comprehension were involved in the study. An in-depth case analysis was conducted. Data consisted of over 16 (30–45 minutes) videotaped and transcribed face-to-face sessions. The dyads solved altogether 151 mathematical word problems of different difficulty levels in a game-format learning environment. The interaction flowchart was used in the analysis to uncover socially shared metacognition. Interviews (also stimulated recall interviews) were conducted in order to obtain further information about socially shared metacognition. The findings showed the emergence of metacognition in a collaborative learning context in a way that cannot solely be explained by individual conception. The concept of socially-shared metacognition (SSMR) was proposed. The results highlighted the emergence of socially shared metacognition specifically in problems where dyads encountered challenges. Small verbal and nonverbal signals between students also triggered the emergence of socially shared metacognition. Additionally, one dyad implemented a system whereby they shared metacognitive regulation based on their strengths in learning. Overall, the findings suggested that in order to discover patterns of socially shared metacognition, it is important to investigate metacognition over time. However, it was concluded that more research on socially shared metacognition, from larger data sets, is needed. These findings formed the basis of the second study. In Study II, the specific aim was to investigate whether socially shared metacognition can be reliably identified from a large dataset of collaborative face-to-face mathematical word problem solving sessions by student dyads. We specifically examined different difficulty levels of tasks as well as the function and focus of socially shared metacognition. Furthermore, the presence of observable metacognitive experiences at the beginning of socially shared metacognition was explored. Four dyads participated in the study. Each dyad was comprised of high-achieving 10-year-old students, ranked in the top 11% of their fourth grade peers (n=393). Dyads were from the same data set as in Study I. The dyads worked face-to-face in a computer-supported, game-format learning environment. Problem-solving processes for 251 tasks at three difficulty levels taking place during 56 (30–45 minutes) lessons were video-taped and analysed. Baseline data for this study were 14 675 turns of transcribed verbal and nonverbal behaviours observed in four study dyads. The micro-level analysis illustrated how participants moved between different channels of communication (individual and interpersonal). The unit of analysis was a set of turns, referred to as an ‘episode’. The results indicated that socially shared metacognition and its function and focus, as well as the appearance of metacognitive experiences can be defined in a reliable way from a larger data set by independent coders. A comparison of the different difficulty levels of the problems suggested that in order to trigger socially shared metacognition in small groups, the problems should be more difficult, as opposed to moderately difficult or easy. Although socially shared metacognition was found in collaborative face-to-face problem solving among high-achieving student dyads, more research is needed in different contexts. This consideration created the basis of the research on socially shared metacognition in Studies III and IV. In Study III, the aim was to expand the research on SSMR from face-to-face mathematical problem solving in student dyads to inquiry-based science learning among small groups in an asynchronous computer-supported collaborative learning (CSCL) environment. The specific aims were to investigate SSMR’s evolvement and functions in a CSCL environment and to explore how SSMR emerges at different phases of the inquiry process. Finally, individual student participation in SSMR during the process was studied. An in-depth explanatory case study of one small group of four girls aged 12 years was carried out. The girls attended a class that has an entrance examination and conducts a language-enriched curriculum. The small group solved complex science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry during 22 lessons (á 45–minute). Students’ network discussion were recorded in written notes (N=640) which were used as study data. A set of notes, referred to here as a ‘thread’, was used as the unit of analysis. The inter-coder agreement was regarded as substantial. The results indicated that SSMR emerges in a small group’s asynchronous CSCL inquiry process in the science domain. Hence, the results of Study III were in line with the previous Study I and Study II and revealed that metacognition cannot be reduced to the individual level alone. The findings also confirm that SSMR should be examined as a process, since SSMR can evolve during different phases and that different SSMR threads overlapped and intertwined. Although the classification of SSMR’s functions was applicable in the context of CSCL in a small group, the dominant function was different in the asynchronous CSCL inquiry in the small group in a science activity than in mathematical word problem solving among student dyads (Study II). Further, the use of different analytical methods provided complementary findings about students’ participation in SSMR. The findings suggest that it is not enough to code just a single written note or simply to examine who has the largest number of notes in the SSMR thread but also to examine the connections between the notes. As the findings of the present study are based on an in-depth analysis of a single small group, further cases were examined in Study IV, as well as looking at the SSMR’s focus, which was also studied in a face-to-face context. In Study IV, the general aim was to investigate the emergence of SSMR with a larger data set from an asynchronous CSCL inquiry process in small student groups carrying out science activities. The specific aims were to study the emergence of SSMR in the different phases of the process, students’ participation in SSMR, and the relation of SSMR’s focus to the quality of outcomes, which was not explored in previous studies. The participants were 12-year-old students from the same class as in Study III. Five small groups consisting of four students and one of five students (N=25) were involved in the study. The small groups solved ill-defined science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry over a total period of 22 hours. Written notes (N=4088) detailed the network discussions of the small groups and these constituted the study data. With these notes, SSMR threads were explored. As in Study III, the thread was used as the unit of analysis. In total, 332 notes were classified as forming 41 SSMR threads. Inter-coder agreement was assessed by three coders in the different phases of the analysis and found to be reliable. Multiple methods of analysis were used. Results showed that SSMR emerged in all the asynchronous CSCL inquiry processes in the small groups. However, the findings did not reveal any significantly changing trend in the emergence of SSMR during the process. As a main trend, the number of notes included in SSMR threads differed significantly in different phases of the process and small groups differed from each other. Although student participation was seen as highly dispersed between the students, there were differences between students and small groups. Furthermore, the findings indicated that the amount of SSMR during the process or participation structure did not explain the differences in the quality of outcomes for the groups. Rather, when SSMRs were focused on understanding and procedural matters, it was associated with achieving high quality learning outcomes. In turn, when SSMRs were focused on incidental and procedural matters, it was associated with low level learning outcomes. Hence, the findings imply that the focus of any emerging SSMR is crucial to the quality of the learning outcomes. Moreover, the findings encourage the use of multiple research methods for studying SSMR. In total, the four studies convincingly indicate that a phenomenon of socially shared metacognitive regulation also exists. This means that it was possible to define the concept of SSMR theoretically, to investigate it methodologically and to validate it empirically in two different learning contexts across dyads and small groups. In-depth micro-level case analysis in Studies I and III showed the possibility to capture and analyse in detail SSMR during the collaborative process, while in Studies II and IV, the analysis validated the emergence of SSMR in larger data sets. Hence, validation was tested both between two environments and within the same environments with further cases. As a part of this dissertation, SSMR’s detailed functions and foci were revealed. Moreover, the findings showed the important role of observable metacognitive experiences as the starting point of SSMRs. It was apparent that problems dealt with by the groups should be rather difficult if SSMR is to be made clearly visible. Further, individual students’ participation was found to differ between students and groups. The multiple research methods employed revealed supplementary findings regarding SSMR. Finally, when SSMR was focused on understanding and procedural matters, this was seen to lead to higher quality learning outcomes. Socially shared metacognition regulation should therefore be taken into consideration in students’ collaborative learning at school similarly to how an individual’s metacognition is taken into account in individual learning.
Resumo:
The general aim of the thesis was to study university students’ learning from the perspective of regulation of learning and text processing. The data were collected from the two academic disciplines of medical and teacher education, which share the features of highly scheduled study, a multidisciplinary character, a complex relationship between theory and practice and a professional nature. Contemporary information society poses new challenges for learning, as it is not possible to learn all the information needed in a profession during a study programme. Therefore, it is increasingly important to learn how to think and learn independently, how to recognise gaps in and update one’s knowledge and how to deal with the huge amount of constantly changing information. In other words, it is critical to regulate one’s learning and to process text effectively. The thesis comprises five sub-studies that employed cross-sectional, longitudinal and experimental designs and multiple methods, from surveys to eye tracking. Study I examined the connections between students’ study orientations and the ways they regulate their learning. In total, 410 second-, fourth- and sixth-year medical students from two Finnish medical schools participated in the study by completing a questionnaire measuring both general study orientations and regulation strategies. The students were generally deeply oriented towards their studies. However, they regulated their studying externally. Several interesting and theoretically reasonable connections between the variables were found. For instance, self-regulation was positively correlated with deep orientation and achievement orientation and was negatively correlated with non-commitment. However, external regulation was likewise positively correlated with deep orientation and achievement orientation but also with surface orientation and systematic orientation. It is argued that external regulation might function as an effective coping strategy in the cognitively loaded medical curriculum. Study II focused on medical students’ regulation of learning and their conceptions of the learning environment in an innovative medical course where traditional lectures were combined wth problem-based learning (PBL) group work. First-year medical and dental students (N = 153) completed a questionnaire assessing their regulation strategies of learning and views about the PBL group work. The results indicated that external regulation and self-regulation of the learning content were the most typical regulation strategies among the participants. In line with previous studies, self-regulation wasconnected with study success. Strictly organised PBL sessions were not considered as useful as lectures, although the students’ views of the teacher/tutor and the group were mainly positive. Therefore, developers of teaching methods are challenged to think of new solutions that facilitate reflection of one’s learning and that improve the development of self-regulation. In Study III, a person-centred approach to studying regulation strategies was employed, in contrast to the traditional variable-centred approach used in Study I and Study II. The aim of Study III was to identify different regulation strategy profiles among medical students (N = 162) across time and to examine to what extent these profiles predict study success in preclinical studies. Four regulation strategy profiles were identified, and connections with study success were found. Students with the lowest self-regulation and with an increasing lack of regulation performed worse than the other groups. As the person-centred approach enables us to individualise students with diverse regulation patterns, it could be used in supporting student learning and in facilitating the early diagnosis of learning difficulties. In Study IV, 91 student teachers participated in a pre-test/post-test design where they answered open-ended questions about a complex science concept both before and after reading either a traditional, expository science text or a refutational text that prompted the reader to change his/her beliefs according to scientific beliefs about the phenomenon. The student teachers completed a questionnaire concerning their regulation and processing strategies. The results showed that the students’ understanding improved after text reading intervention and that refutational text promoted understanding better than the traditional text. Additionally, regulation and processing strategies were found to be connected with understanding the science phenomenon. A weak trend showed that weaker learners would benefit more from the refutational text. It seems that learners with effective learning strategies are able to pick out the relevant content regardless of the text type, whereas weaker learners might benefit from refutational parts that contrast the most typical misconceptions with scientific views. The purpose of Study V was to use eye tracking to determine how third-year medical studets (n = 39) and internal medicine residents (n = 13) read and solve patient case texts. The results revealed differences between medical students and residents in processing patient case texts; compared to the students, the residents were more accurate in their diagnoses and processed the texts significantly faster and with a lower number of fixations. Different reading patterns were also found. The observed differences between medical students and residents in processing patient case texts could be used in medical education to model expert reasoning and to teach how a good medical text should be constructed. The main findings of the thesis indicate that even among very selected student populations, such as high-achieving medical students or student teachers, there seems to be a lot of variation in regulation strategies of learning and text processing. As these learning strategies are related to successful studying, students enter educational programmes with rather different chances of managing and achieving success. Further, the ways of engaging in learning seldom centre on a single strategy or approach; rather, students seem to combine several strategies to a certain degree. Sometimes, it can be a matter of perspective of which way of learning can be considered best; therefore, the reality of studying in higher education is often more complicated than the simplistic view of self-regulation as a good quality and external regulation as a harmful quality. The beginning of university studies may be stressful for many, as the gap between high school and university studies is huge and those strategies that were adequate during high school might not work as well in higher education. Therefore, it is important to map students’ learning strategies and to encourage them to engage in using high-quality learning strategies from the beginning. Instead of separate courses on learning skills, the integration of these skills into course contents should be considered. Furthermore, learning complex scientific phenomena could be facilitated by paying attention to high-quality learning materials and texts and other support from the learning environment also in the university. Eye tracking seems to have great potential in evaluating performance and growing diagnostic expertise in text processing, although more research using texts as stimulus is needed. Both medical and teacher education programmes and the professions themselves are challenging in terms of their multidisciplinary nature and increasing amounts of information and therefore require good lifelong learning skills during the study period and later in work life.
Resumo:
This thesis is a research about the recent complex spatial changes in Namibia and Tanzania and local communities’ capacity to cope with, adapt to and transform the unpredictability engaged to these processes. I scrutinise the concept of resilience and its potential application to explaining the development of local communities in Southern Africa when facing various social, economic and environmental changes. My research is based on three distinct but overlapping research questions: what are the main spatial changes and their impact on the study areas in Namibia and Tanzania? What are the adaptation, transformation and resilience processes of the studied local communities in Namibia and Tanzania? How are innovation systems developed, and what is their impact on the resilience of the studied local communities in Namibia and Tanzania? I use four ethnographic case studies concerning environmental change, global tourism and innovation system development in Namibia and Tanzania, as well as mixed-methodological approaches, to study these issues. The results of my empirical investigation demonstrate that the spatial changes in the localities within Namibia and Tanzania are unique, loose assemblages, a result of the complex, multisided, relational and evolutional development of human and non-human elements that do not necessarily have linear causalities. Several changes co-exist and are interconnected though uncertain and unstructured and, together with the multiple stressors related to poverty, have made communities more vulnerable to different changes. The communities’ adaptation and transformation measures have been mostly reactive, based on contingency and post hoc learning. Despite various anticipation techniques, coping measures, adaptive learning and self-organisation processes occurring in the localities, the local communities are constrained by their uneven power relationships within the larger assemblages. Thus, communities’ own opportunities to increase their resilience are limited without changing the relations in these multiform entities. Therefore, larger cooperation models are needed, like an innovation system, based on the interactions of different actors to foster cooperation, which require collaboration among and input from a diverse set of stakeholders to combine different sources of knowledge, innovation and learning. Accordingly, both Namibia and Tanzania are developing an innovation system as their key policy to foster transformation towards knowledge-based societies. Finally, the development of an innovation system needs novel bottom-up approaches to increase the resilience of local communities and embed it into local communities. Therefore, innovation policies in Namibia have emphasised the role of indigenous knowledge, and Tanzania has established the Living Lab network.
Resumo:
The objective of the thesis was to study the possible linguistic differences of English of Finnish mainstream students and Finnish students following content and language integrated learning (CLIL), in terms of the given language test. The difference of test results between the test groups was further analyzed in more detail. The research was carried out by comparing the 9th grade students of the Finnish comprehensive school (the mainstream group) and CLIL students of the 9th grade of the Finnish comprehensive school (the CLIL group). The comparison was based on the national language test for the 9th grade students of the Finnish comprehensive school 2006 (A-English), produced by Sukol-Palvelu, owned by the Federation of Foreign Language Teachers in Finland SUKOL. The mainstream group of the present study consisted of 30 students, whereas the CLIL group included 27 students. Testing was carried out in spring 2007. The test results of the mainstream group (average of 64.1% out of the maximum score) were consistent with the results of the national average (63.9%). The average score of the CLIL students for the present study was 83.3% out of the maximum score. The results of the two groups in question were rather similar in the tasks measuring the skill of listening comprehension, in addition to one of the reading comprehension tasks. Moreover, a particular task with requirements of cultural and reactional skills produced results rather similar between the test groups. The differences between the results of the mainstream group and the CLIL group were most evident in three particular tasks. In general, the CLIL group performed clearly better than the mainstream group in the task measuring the knowledge of the polite conversational manners of the English-speaking world and in the tasks with requirements of lexical and structural knowledge of English. However, the writing task resulted in the most evident difference of results between the groups. In other words, the CLIL students of the present study were clearly more capable of producing English language with more varied vocabulary and more complex structures than the mainstream students. Thus, it might be argued whether the CLIL programme is to enhance the students´ performance in the productive skill of writing in particular. As a result, it might be useful to consider the possibilities of the CLIL programme in developing certain linguistic skills of the mainstream students of English as well.