46 resultados para Complex adaptive systems

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Systems biology is a new, emerging and rapidly developing, multidisciplinary research field that aims to study biochemical and biological systems from a holistic perspective, with the goal of providing a comprehensive, system- level understanding of cellular behaviour. In this way, it addresses one of the greatest challenges faced by contemporary biology, which is to compre- hend the function of complex biological systems. Systems biology combines various methods that originate from scientific disciplines such as molecu- lar biology, chemistry, engineering sciences, mathematics, computer science and systems theory. Systems biology, unlike “traditional” biology, focuses on high-level concepts such as: network, component, robustness, efficiency, control, regulation, hierarchical design, synchronization, concurrency, and many others. The very terminology of systems biology is “foreign” to “tra- ditional” biology, marks its drastic shift in the research paradigm and it indicates close linkage of systems biology to computer science. One of the basic tools utilized in systems biology is the mathematical modelling of life processes tightly linked to experimental practice. The stud- ies contained in this thesis revolve around a number of challenges commonly encountered in the computational modelling in systems biology. The re- search comprises of the development and application of a broad range of methods originating in the fields of computer science and mathematics for construction and analysis of computational models in systems biology. In particular, the performed research is setup in the context of two biolog- ical phenomena chosen as modelling case studies: 1) the eukaryotic heat shock response and 2) the in vitro self-assembly of intermediate filaments, one of the main constituents of the cytoskeleton. The range of presented approaches spans from heuristic, through numerical and statistical to ana- lytical methods applied in the effort to formally describe and analyse the two biological processes. We notice however, that although applied to cer- tain case studies, the presented methods are not limited to them and can be utilized in the analysis of other biological mechanisms as well as com- plex systems in general. The full range of developed and applied modelling techniques as well as model analysis methodologies constitutes a rich mod- elling framework. Moreover, the presentation of the developed methods, their application to the two case studies and the discussions concerning their potentials and limitations point to the difficulties and challenges one encounters in computational modelling of biological systems. The problems of model identifiability, model comparison, model refinement, model inte- gration and extension, choice of the proper modelling framework and level of abstraction, or the choice of the proper scope of the model run through this thesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Being a top of high technology industries, the aerospace represents one of the most complex fields of study. While the competitiveness of aircraft systems’ manufacturers attracts a significant number of researchers, some of the issues remain to be a blank spot. One of those is the after-sale modernization. The master thesis investigates how this concept is related to the theory of competitive advantages. Finding the routes in the framework of complex technological systems’ lifecycle, the key drivers of the aircraft modernization market are revealed. The competitive positioning of players is defined through multiple case studies in a form of several in-depth interviews. The key result of the research is the conclusion that modernization should be considered as an inherent component of strategy of any aircraft systems’ manufacturer, while the master thesis aims to support managerial decision making.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Developing software is a difficult and error-prone activity. Furthermore, the complexity of modern computer applications is significant. Hence,an organised approach to software construction is crucial. Stepwise Feature Introduction – created by R.-J. Back – is a development paradigm, in which software is constructed by adding functionality in small increments. The resulting code has an organised, layered structure and can be easily reused. Moreover, the interaction with the users of the software and the correctness concerns are essential elements of the development process, contributing to high quality and functionality of the final product. The paradigm of Stepwise Feature Introduction has been successfully applied in an academic environment, to a number of small-scale developments. The thesis examines the paradigm and its suitability to construction of large and complex software systems by focusing on the development of two software systems of significant complexity. Throughout the thesis we propose a number of improvements and modifications that should be applied to the paradigm when developing or reengineering large and complex software systems. The discussion in the thesis covers various aspects of software development that relate to Stepwise Feature Introduction. More specifically, we evaluate the paradigm based on the common practices of object-oriented programming and design and agile development methodologies. We also outline the strategy to testing systems built with the paradigm of Stepwise Feature Introduction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The three alpha2-adrenoceptor (alpha2-AR) subtypes belong to the G protein-coupled receptor superfamily and represent potential drug targets. These receptors have many vital physiological functions, but their actions are complex and often oppose each other. Current research is therefore driven towards discovering drugs that selectively interact with a specific subtype. Cell model systems can be used to evaluate a chemical compound's activity in complex biological systems. The aim of this thesis was to optimize and validate cell-based model systems and assays to investigate alpha2-ARs as drug targets. The use of immortalized cell lines as model systems is firmly established but poses several problems, since the protein of interest is expressed in a foreign environment, and thus essential components of receptor regulation or signaling cascades might be missing. Careful cell model validation is thus required; this was exemplified by three different approaches. In cells heterologously expressing alpha2A-ARs, it was noted that the transfection technique affected the test outcome; false negative adenylyl cyclase test results were produced unless a cell population expressing receptors in a homogenous fashion was used. Recombinant alpha2C-ARs in non-neuronal cells were retained inside the cells, and not expressed in the cell membrane, complicating investigation of this receptor subtype. Receptor expression enhancing proteins (REEPs) were found to be neuronalspecific adapter proteins that regulate the processing of the alpha2C-AR, resulting in an increased level of total receptor expression. Current trends call for the use of primary cells endogenously expressing the receptor of interest; therefore, primary human vascular smooth muscle cells (SMC) expressing alpha2-ARs were tested in a functional assay monitoring contractility with a myosin light chain phosphorylation assay. However, these cells were not compatible with this assay due to the loss of differentiation. A rat aortic SMC cell line transfected to express the human alpha2B-AR was adapted for the assay, and it was found that the alpha2-AR agonist, dexmedetomidine, evoked myosin light chain phosphorylation in this model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adaptive control systems are one of the most significant research directions of modern control theory. It is well known that every mechanical appliance’s behavior noticeably depends on environmental changes, functioning-mode parameter changes and changes in technical characteristics of internal functional devices. An adaptive controller involved in control process allows reducing an influence of such changes. In spite of this such type of control methods is applied seldom due to specifics of a controller designing. The work presented in this paper shows the design process of the adaptive controller built by Lyapunov’s function method for the Hydraulic Drive. The calculation needed and the modeling were conducting with MATLAB® software including Simulink® and Symbolic Math Toolbox™ etc. In the work there was applied the Jacobi matrix linearization of the object’s mathematical model and derivation of the suitable reference models based on Newton’s characteristic polynomial. The intelligent adaptive to nonlinearities algorithm for solving Lyapunov’s equation was developed. Developed algorithm works properly but considered plant is not met requirement of functioning with. The results showed confirmation that adaptive systems application significantly increases possibilities in use devices and might be used for correction a system’s behavior dynamics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monimutkaisen tietokonejärjestelmän suorituskykyoptimointi edellyttää järjestelmän ajonaikaisen käyttäytymisen ymmärtämistä. Ohjelmiston koon ja monimutkaisuuden kasvun myötä suorituskykyoptimointi tulee yhä tärkeämmäksi osaksi tuotekehitysprosessia. Tehokkaampien prosessorien käytön myötä myös energiankulutus ja lämmöntuotto ovat nousseet yhä suuremmiksi ongelmiksi, erityisesti pienissä, kannettavissa laitteissa. Lämpö- ja energiaongelmien rajoittamiseksi on kehitetty suorituskyvyn skaalausmenetelmiä, jotka edelleen lisäävät järjestelmän kompleksisuutta ja suorituskykyoptimoinnin tarvetta. Tässä työssä kehitettiin visualisointi- ja analysointityökalu ajonaikaisen käyttäytymisen ymmärtämisen helpottamiseksi. Lisäksi kehitettiin suorituskyvyn mitta, joka mahdollistaa erilaisten skaalausmenetelmien vertailun ja arvioimisen suoritusympäristöstä riippumatta, perustuen joko suoritustallenteen tai teoreettiseen analyysiin. Työkalu esittää ajonaikaisesti kerätyn tallenteen helposti ymmärrettävällä tavalla. Se näyttää mm. prosessit, prosessorikuorman, skaalausmenetelmien toiminnan sekä energiankulutuksen kolmiulotteista grafiikkaa käyttäen. Työkalu tuottaa myös käyttäjän valitsemasta osasta suorituskuvaa numeerista tietoa, joka sisältää useita oleellisia suorituskykyarvoja ja tilastotietoa. Työkalun sovellettavuutta tarkasteltiin todellisesta laitteesta saatua suoritustallennetta sekä suorituskyvyn skaalauksen simulointia analysoimalla. Skaalausmekanismin parametrien vaikutus simuloidun laitteen suorituskykyyn analysoitiin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Verkostosodankäynti on suuren huomion kohteena useiden maiden puolustusvoimien järjestelmäkehityshankkeissa. Verkostosodankäynnin tavoitteena on kytkeä kaikki taistelukentän komponentit yhteen nopean tiedonsiirtoverkon avulla. Tällä pyritään tehokkaampaan tiedonjakoon ja edelleen resurssien tehokkaampaan käyttöön. Keskeisessä osassa verkostosodankäynnin tavoitteiden saavuttamisessa on palvelukeskeinen arkkitehtuuri (SOA). Tarve yhä monimutkaisemmille tietojärjestelmille pakottaa myös sotilasympäristön toimijat etsimään ratkaisuja valmiista kaupallisista toteutuksista. Verkottunut toiminta tuottaa valtavasti erilaista tilannetietoa. Tilannetiedon pohjalta muodostetaan erilaisia tilannekuvia, joita johtajat käyttävät päätöksentekonsa tukena. Työssä tutkitaan kaupallisen mashup-alustan käyttöä tilannekuvan luomiseen. Mashup-alusta on tietojärjestelmä, jolla voidaan helposti ja nopeasti integroida useista lähteistä saatavaa informaatiota. Mashup-alusta mahdollistaa niin kutsuttujen käyttäjämääriteltyjen tilannekuvien luomisen. Työn tuloksena mashup-alustan soveltuvuus tähän käyttöön on hyvä ja se soveltuu hyvin erityisesti tilanteisiin, joissa vaaditaan nopeita ratkaisuja. Jatkotutkimusta aiheesta tarvitaan, koska mashupalustan käyttöä sotilaallisissa tietojärjestelmissä ei ole juurikaan tutkittu ja aihe on suhteellisen uusi myös tiedeyhteisössä.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Kirjallisuusarvostelu

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adapting and scaling up agile concepts, which are characterized by iterative, self-directed, customer value focused methods, may not be a simple endeavor. This thesis concentrates on studying challenges in a large-scale agile software development transformation in order to enhance understanding and bring insight into the underlying factors for such emerging challenges. This topic is approached through understanding the concepts of agility and different methods compared to traditional plan-driven processes, complex adaptive theory and the impact of organizational culture on agile transformational efforts. The empirical part was conducted by a qualitative case study approach. The internationally operating software development case organization had a year of experience of an agile transformation effort during it had also undergone organizational realignment efforts. The primary data collection was conducted through semi-structured interviews supported by participatory observation. As a result the identified challenges were categorized under four broad themes: organizational, management, team dynamics and process related. The identified challenges indicate that agility is a multifaceted concept. Agile practices may bring visibility in issues of which many are embedded in the organizational culture or in the management style. Viewing software development as a complex adaptive system could facilitate understanding of the underpinning philosophy and eventually solving the issues: interactions are more important than processes and solving a complex problem, such a novel software development, requires constant feedback and adaptation to changing requirements. Furthermore, an agile implementation seems to be unique in nature, and agents engaged in the interaction are the pivotal part of the success of achieving agility. In case agility is not a strategic choice for whole organization, it seems additional issues may arise due to different ways of working in different parts of an organization. Lastly, detailed suggestions to mitigate the challenges of the case organization are provided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the field of molecular biology, scientists adopted for decades a reductionist perspective in their inquiries, being predominantly concerned with the intricate mechanistic details of subcellular regulatory systems. However, integrative thinking was still applied at a smaller scale in molecular biology to understand the underlying processes of cellular behaviour for at least half a century. It was not until the genomic revolution at the end of the previous century that we required model building to account for systemic properties of cellular activity. Our system-level understanding of cellular function is to this day hindered by drastic limitations in our capability of predicting cellular behaviour to reflect system dynamics and system structures. To this end, systems biology aims for a system-level understanding of functional intraand inter-cellular activity. Modern biology brings about a high volume of data, whose comprehension we cannot even aim for in the absence of computational support. Computational modelling, hence, bridges modern biology to computer science, enabling a number of assets, which prove to be invaluable in the analysis of complex biological systems, such as: a rigorous characterization of the system structure, simulation techniques, perturbations analysis, etc. Computational biomodels augmented in size considerably in the past years, major contributions being made towards the simulation and analysis of large-scale models, starting with signalling pathways and culminating with whole-cell models, tissue-level models, organ models and full-scale patient models. The simulation and analysis of models of such complexity very often requires, in fact, the integration of various sub-models, entwined at different levels of resolution and whose organization spans over several levels of hierarchy. This thesis revolves around the concept of quantitative model refinement in relation to the process of model building in computational systems biology. The thesis proposes a sound computational framework for the stepwise augmentation of a biomodel. One starts with an abstract, high-level representation of a biological phenomenon, which is materialised into an initial model that is validated against a set of existing data. Consequently, the model is refined to include more details regarding its species and/or reactions. The framework is employed in the development of two models, one for the heat shock response in eukaryotes and the second for the ErbB signalling pathway. The thesis spans over several formalisms used in computational systems biology, inherently quantitative: reaction-network models, rule-based models and Petri net models, as well as a recent formalism intrinsically qualitative: reaction systems. The choice of modelling formalism is, however, determined by the nature of the question the modeler aims to answer. Quantitative model refinement turns out to be not only essential in the model development cycle, but also beneficial for the compilation of large-scale models, whose development requires the integration of several sub-models across various levels of resolution and underlying formal representations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Building a computational model for complex biological systems is an iterative process. It starts from an abstraction of the process and then incorporates more details regarding the specific biochemical reactions which results in the change of the model fit. Meanwhile, the model’s numerical properties such as its numerical fit and validation should be preserved. However, refitting the model after each refinement iteration is computationally expensive resource-wise. There is an alternative approach which ensures the model fit preservation without the need to refit the model after each refinement iteration. And this approach is known as quantitative model refinement. The aim of this thesis is to develop and implement a tool called ModelRef which does the quantitative model refinement automatically. It is both implemented as a stand-alone Java application and as one of Anduril framework components. ModelRef performs data refinement of a model and generates the results in two different well known formats (SBML and CPS formats). The development of this tool successfully reduces the time and resource needed and the errors generated as well by traditional reiteration of the whole model to perform the fitting procedure.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Through advances in technology, System-on-Chip design is moving towards integrating tens to hundreds of intellectual property blocks into a single chip. In such a many-core system, on-chip communication becomes a performance bottleneck for high performance designs. Network-on-Chip (NoC) has emerged as a viable solution for the communication challenges in highly complex chips. The NoC architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication challenges such as wiring complexity, communication latency, and bandwidth. Furthermore, the combined benefits of 3D IC and NoC schemes provide the possibility of designing a high performance system in a limited chip area. The major advantages of 3D NoCs are the considerable reductions in average latency and power consumption. There are several factors degrading the performance of NoCs. In this thesis, we investigate three main performance-limiting factors: network congestion, faults, and the lack of efficient multicast support. We address these issues by the means of routing algorithms. Congestion of data packets may lead to increased network latency and power consumption. Thus, we propose three different approaches for alleviating such congestion in the network. The first approach is based on measuring the congestion information in different regions of the network, distributing the information over the network, and utilizing this information when making a routing decision. The second approach employs a learning method to dynamically find the less congested routes according to the underlying traffic. The third approach is based on a fuzzy-logic technique to perform better routing decisions when traffic information of different routes is available. Faults affect performance significantly, as then packets should take longer paths in order to be routed around the faults, which in turn increases congestion around the faulty regions. We propose four methods to tolerate faults at the link and switch level by using only the shortest paths as long as such path exists. The unique characteristic among these methods is the toleration of faults while also maintaining the performance of NoCs. To the best of our knowledge, these algorithms are the first approaches to bypassing faults prior to reaching them while avoiding unnecessary misrouting of packets. Current implementations of multicast communication result in a significant performance loss for unicast traffic. This is due to the fact that the routing rules of multicast packets limit the adaptivity of unicast packets. We present an approach in which both unicast and multicast packets can be efficiently routed within the network. While suggesting a more efficient multicast support, the proposed approach does not affect the performance of unicast routing at all. In addition, in order to reduce the overall path length of multicast packets, we present several partitioning methods along with their analytical models for latency measurement. This approach is discussed in the context of 3D mesh networks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The primary objective is to identify the critical factors that have a natural impact on the performance measurement system. It is important to make correct decisions related to measurement systems, which are based on the complex business environment. The performance measurement system is combined with a very complex non-linear factor. The Six Sigma methodology is seen as one potential approach at every organisational level. It will be linked to the performance and financial measurement as well as to the analytical thinking on which the viewpoint of management depends. The complex systems are connected to the customer relationship study. As the primary throughput can be seen in a new well-defined performance measurement structure that will also be facilitated as will an analytical multifactor system. These critical factors should also be seen as a business innovation opportunity at the same time. This master's thesis has been divided into two different theoretical parts. The empirical part consists of both action-oriented and constructive research approaches with an empirical case study. The secondary objective is to seek a competitive advantage factor with a new analytical tool and the Six Sigma thinking. Process and product capabilities will be linked to the contribution of complex system. These critical barriers will be identified by the performance measuring system. The secondary throughput can be recognised as the product and the process cost efficiencies which throughputs are achieved with an advantage of management. The performance measurement potential is related to the different productivity analysis. Productivity can be seen as one essential part of the competitive advantage factor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.