2 resultados para Colorectal cancers

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer remains an undetermined question for modern medicine. Every year millions of people ranging from children to adult die since the modern treatment is unable to meet the challenge. Research must continue in the area of new biomarkers for tumors. Molecular biology has evolved during last years; however, this knowledge has not been applied into the medicine. Biological findings should be used to improve diagnostics and treatment modalities. In this thesis, human formalin-fixed paraffin embedded colorectal and breast cancer samples were used to optimize the double immunofluorescence staining protocol. Also, immunohistochemistry was performed in order to visualize expression patterns of each biomarker. Concerning double immunofluorescence, feasibility of primary antibodies raised in different and same host species was also tested. Finally, established methods for simultaneous multicolor immunofluorescence imaging of formalin-fixed paraffin embedded specimens were applied for the detection of pairs of potential biomarkers of colorectal cancer (EGFR, pmTOR, pAKT, Vimentin, Cytokeratin Pan, Ezrin, E-cadherin) and breast cancer (Securin, PTTG1IP, Cleaved caspase 3, ki67).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein phosphatase 2A (PP2A) plays a major role in maintaining cellular signaling homeostasis in human cells by reversibly affecting the phosphorylation of a variety of proteins. Protein phosphatase methylesterase-1 (PME-1) negatively regulates PP2A activity by reversible demethylation and active site binding. Thus far, it is known that overexpression of PME-1 in human gliomas contributes to ERK pathway signaling, cell proliferation, and malignant progression. Whether PME-1-mediated PP2A inhibition promotes therapy resistance in gliomas is unknown. Specific PP2A targets regulated by PME-1 in cancers also remain elusive. Additionally, whether oncogenic function of PME-1 can be generalized to various human cancers needs to be investigated. This study demonstrated that PME-1 expression promotes kinase inhibitor resistance in glioblastoma (GBM). PME-1 silencing sensitized GBM cells to a group of clinically used indolocarbazole multikinase inhibitors (MKIs). To facilitate the quantitative evaluation of MKIs by cancer-cell specific colony formation assay, Image-J software-plugin ‘ColonyArea’ was developed. PME-1-silencing was found to reactivate specific PP2A complexes and affect PP2A-target histone deacetylase HDAC4 activity. The HDAC4 inhibition induced synthetic lethality with MKIs similar to PME-1 depletion. However, synthetic lethality by both approaches required co-expression of a pro-apoptotic protein BAD. In gliomas, PME-1 and HDAC4 expression was associated with malignant progression. Using tumor PME-1, HDAC4 and BAD expression based stratification signatures this study defined patient subgroups that are likely to respond to MKI alone or in combination with HDAC4 inhibitor therapies. In contrast to the oncogenic role of PME-1 in certain cancer types, this study established that colorectal cancer (CRC) patients with high tumor PME-1 expression display favorable prognosis. Interestingly, PME-1 regulated survival signaling did not operate in CRC cells. Summarily, this study potentiates the candidacy of PME-1 as a therapy target in gliomas, but argues against generalization of these findings to other cancers, especially CRC.