11 resultados para Clausocalanus arcuicornis, c3, length

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

After discovery of cuprates, a search for new high temperature superconducting families began and it led to the discovery of layered pnictide compounds with critical temperatures limited up to ∼56 K. Pnictides consist elements from Group V of Periodic Table (nitrogen, phosphorus, arsenic, antimony and bismuth). In this work coherence length h in mixed state of pnictide superconductors is calculated numerically. In calculation is taken into account interband and intraband impurity scattering in framework of quasiclassical Eilenberger theory for s± pairing symmetry. Differences between Ginzburg-Landau and Eilenberger theories is shown and the comparison with existing models is done.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After discovery of cuprates, a search for new high temperature superconducting families began and it led to the discovery of layered pnictide compounds with critical temperatures limited up to ~56 K. Pnictides consist elements from Group V of Periodic Table (nitrogen, phosphorus, arsenic, antimony and bismuth). In this work coherence length ξh in mixed state of pnictide superconductors is calculated numerically. In calculation is taken into account interband and intraband impurity scattering in framework of quasiclassical Eilenberger theory for s± pairing symmetry. Differences between Ginzburg-Landau and Eilenberger theories is shown and the comparison with existing models is done.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

kuv., 11 x 16 cm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of our society is impossible without a constant progress in life-important areas such as chemical engineering and technology. Innovation, creativity and technology are three main components driving the progress of chemistry further towards a sustainable society. Biomass, being an attractive renewable feedstock for production of fine chemicals, energy-rich materials and even transportation fuels, captures progressively new positions in the area of chemical technology. Knowledge of heterogeneous catalysis and chemical technology applied to transformation of biomass-derived substances will open doors for a sustainable economy and facilitates the discovery of novel environmentally-benign processes which probably will replace existing technologies in the era of biorefinary. Aqueous-phase reforming (APR) is regarded as a promising technology for production of hydrogen and liquids fuels from biomass-derived substances such as C3-C6 polyols. In the present work, aqueous-phase reforming of glycerol, xylitol and sorbitol was investigated in the presence of supported Pt catalysts. The catalysts were deposited on different support materials, including Al2O3, TiO2 and carbons. Catalytic measurements were performed in a laboratory-scale continuous fixedbed reactor. An advanced analytical approach was developed in order to identify reaction products and reaction intermediates in the APR of polyols. The influence of the substrate structure on the product formation and selectivity in the APR reaction was also investigated, showing that the yields of the desired products varied depending on the substrate chain length. Additionally, the influence of bioethanol additive in the APR of glycerol and sorbitol was studied. A reaction network was advanced explaining the formation of products and key intermediates. The structure sensitivity in the aqueous-phase reforming reaction was demonstrated using a series of platinum catalysts supported on carbon with different Pt cluster sizes in the continuous fixed-bed reactor. Furthermore, a correlation between texture physico-chemical properties of the catalysts and catalytic data was established. The effect of the second metal (Re, Cu) addition to Pt catalysts was investigated in the APR of xylitol showing a superior hydrocarbon formation on PtRe bimetallic catalysts compared to monometallic Pt. On the basis of the experimental data obtained, mathematical modeling of the reaction kinetics was performed. The developed model was proven to successfully describe experimental data on APR of sorbitol with good accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramides comprise a class of sphingolipids that exist only in small amounts in cellular membranes, but which have been associated with important roles in cellular signaling processes. The influences that ceramides have on the physical properties of bilayer membranes reach from altered thermodynamical behavior to significant impacts on the molecular order and lateral distribution of membrane lipids. Along with the idea that the membrane physical state could influence the physiological state of a cell, the membrane properties of ceramides have gained increasing interest. Therefore, membrane phenomena related to ceramides have become a subject of intense study both in cellular as well as in artificial membranes. Artificial bilayers, the so called model membranes, are substantially simpler in terms of contents and spatio-temporal variation than actual cellular membranes, and can be used to give detailed information about the properties of individual lipid species in different environments. This thesis focuses on investigating how the different parts of the ceramide molecule, i.e., the N-linked acyl chain, the long-chain sphingoid base and the membrane-water interface region, govern the interactions and lateral distribution of these lipids in bilayer membranes. With the emphasis on ceramide/sphingomyelin(SM)-interactions, the relevance of the size of the SMhead group for the interaction was also studied. Ceramides with methylbranched N-linked acyl chains, varying length sphingoid bases, or methylated 2N (amide-nitrogen) and 3O (C3-hydroxyl) at the interface region, as well as SMs with decreased head group size, were synthesized and their bilayer properties studied by calorimetric and fluorescence spectroscopic techniques. In brief, the results showed that the packing of the ceramide acyl chains was more sensitive to methyl-branching in the mid part than in the distal end of the N-linked chain, and that disrupting the interfacial structure at the amide-nitrogen, as opposed to the C3-hydroxyl, had greater effect on the interlipid interactions of ceramides. Interestingly, it appeared that the bilayer properties of ceramides could be more sensitive to small alterations in the length of the long-chain base than what was previously reported for the N-linked acyl chain. Furthermore, the data indicated that the SM-head group does not strongly influence the interactions between SMs and ceramides. The results in this thesis illustrate the pivotal role of some essential parts of the ceramide molecules in determining their bilayer properties. The thesis provides increased understanding of the molecular aspects of ceramides that possibly affect their functions in biological membranes, and could relate to distinct effects on cell physiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 kartta :, vär. ;, 51,4 x 43,1 cm, lehti 58,2 x 50,4 cm