18 resultados para Classification Methods

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main objective of the study is to form a framework that provides tools to recognise and classify items whose demand is not smooth but varies highly on size and/or frequency. The framework will then be combined with two other classification methods in order to form a three-dimensional classification model. Forecasting and inventory control of these abnormal demand items is difficult. Therefore another object of this study is to find out which statistical forecasting method is most suitable for forecasting of abnormal demand items. The accuracy of different methods is measured by comparing the forecast to the actual demand. Moreover, the study also aims at finding proper alternatives to the inventory control of abnormal demand items. The study is quantitative and the methodology is a case study. The research methods consist of theory, numerical data, current state analysis and testing of the framework in case company. The results of the study show that the framework makes it possible to recognise and classify the abnormal demand items. It is also noticed that the inventory performance of abnormal demand items differs significantly from the performance of smoothly demanded items. This makes the recognition of abnormal demand items very important.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Työn tavoitteet liittyivät varastonhallintakäytäntöjen kehittämiseen sekä tämän seurantaan ja ylläpitoon liittyvien työvälineiden luomiseen. Päätutkimuskysymyksenä oli: 'Miten varastonhallintakäytäntöä kannattaisi parantaa, niin että nykyisillä resursseilla saavutettaisiin kustannussäästöjä asiakkaan palvelutasoa alentamatta?' Keskeinen teoreettinen sisältö liittyy varastonhallintakäytäntöihin. Tämä käsitellään varastonhallinnan perusteiden, varastonohjauksen, suorituskyvyn arvioinnin sekä varastonhallintakäytännön muutosprosessin avulla. Empiirinen osuus suoritetaan kohdeyrityksen logistisen muutosprosessimallin läpiviemisen avulla sisältäen tunnuslukuja, täydennysmenetelmiä, tuoteluokittelua ja muita analyyseja. Muutosprosessin vaiheet ovat edellytysten selvittäminen, nykytilan kuvaus ja analysointi, vaihtoehtoisten ratkaisujen ehdottaminen, nykytilan vertailu ratkaisuehdotelmiin, yhden ratkaisun valitseminen, muutoksen läpivienti ja lopputulosten seuranta. Työn keskeiset tulokset ovat erilaisten varastonhallintaan liittyvien tunnuslukujen laskeminen, tuoteluokittelun suorittaminen, täydennysmenetelmiin kuuluvien kaavojen luominen, varastokartan laatiminen ja toimintavaihtoehtojen esittely. Viimeiseen sisältyy oman muokatun kohdeyritykselle soveltuvan ¿voi tilata¿ täydennysmenetelmän laatiminen, ehdotuksen tekeminen liikkumattomien nimikkeiden eroon pääsemisestä, nimikkeiden uudelleensijoittaminen varastoon laaditun varastokartan mukaisesti, uuden työjaonluominen, muutosehdotuksen säännöllinen seuranta ja uusien tavoitteiden asettaminen sekä koulutustarpeeseen ja tietojärjestelmän kehittämiseen liittyvien ehdotusten tekeminen emoyhtiölle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tärkeä tehtävä ympäristön tarkkailussa on arvioida ympäristön nykyinen tila ja ihmisen siihen aiheuttamat muutokset sekä analysoida ja etsiä näiden yhtenäiset suhteet. Ympäristön muuttumista voidaan hallita keräämällä ja analysoimalla tietoa. Tässä diplomityössä on tutkittu vesikasvillisuudessa hai vainuja muutoksia käyttäen etäältä hankittua mittausdataa ja kuvan analysointimenetelmiä. Ympäristön tarkkailuun on käytetty Suomen suurimmasta järvestä Saimaasta vuosina 1996 ja 1999 otettuja ilmakuvia. Ensimmäinen kuva-analyysin vaihe on geometrinen korjaus, jonka tarkoituksena on kohdistaa ja suhteuttaa otetut kuvat samaan koordinaattijärjestelmään. Toinen vaihe on kohdistaa vastaavat paikalliset alueet ja tunnistaa kasvillisuuden muuttuminen. Kasvillisuuden tunnistamiseen on käytetty erilaisia lähestymistapoja sisältäen valvottuja ja valvomattomia tunnistustapoja. Tutkimuksessa käytettiin aitoa, kohinoista mittausdataa, minkä perusteella tehdyt kokeet antoivat hyviä tuloksia tutkimuksen onnistumisesta.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Problem of modeling of anaesthesia depth level is studied in this Master Thesis. It applies analysis of EEG signals with nonlinear dynamics theory and further classification of obtained values. The main stages of this study are the following: data preprocessing; calculation of optimal embedding parameters for phase space reconstruction; obtaining reconstructed phase portraits of each EEG signal; formation of the feature set to characterise obtained phase portraits; classification of four different anaesthesia levels basing on previously estimated features. Classification was performed with: Linear and quadratic Discriminant Analysis, k Nearest Neighbours method and online clustering. In addition, this work provides overview of existing approaches to anaesthesia depth monitoring, description of basic concepts of nonlinear dynamics theory used in this Master Thesis and comparative analysis of several different classification methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Customer satisfaction should be the main focus for all of the parts of the business. Usually supply chain behind the business is in a key role when this focus is pursued especially in repair service business. When focusing on the materials that are needed to make repairs to equipment under service contracts, the time aspect of quality is critical. Do late deliveries from supplier have an effect on the service performance of repairs when distribution center of a centralized purchasing unit is acting as a buffer between suppliers and repair service business? And if so, how should the improvement efforts be prioritized? These are the two main questions that this thesis focuses on. Correlation and linear regression was tested between service levels of supplier and distribution center. Percentage of on-time deliveries were compared to outbound delivery service level. It was found that there is statistically significant correlation between inbound and outbound operations success. The other main question of the thesis, improvement prioritization, was answered by creating material availability based supplier classification and additional to that, by developing the decision process for the analysis of most critical suppliers. This was built on a basis of previous supplier and material classification methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tässä työssä tarkastellaan kahden kansainvälisen patenttiluokitusjärjestelmän vihreiden teknologioiden luokitusjärjestelmiä autoteollisuudessa. Työn tarkoitus on tutkia, kuinka paljon vihreän teknologian patenttianalyysin tulokset eroavat toisistaan, jos tutkimuksissa käytetään eri patenttien luokitusjärjestelmiä. Vanhempi järjestelmä, International Patent Classification, on asemansa vakiinnuttanut kansainvälinen patenttienluokitusjärjestelmä. Vasta viime vuosina käyttöön otettu Cooperative Patent Classification on Euroopan ja Yhdysvaltojen patenttijärjestöjen kehittämä patenttien luokitusjärjestelmä. Tutkimusmenetelmissä hyödynnetään patenttianalyysia ja joukko-oppia. Tutkimuksessa vihreiden teknologioiden luokittelumenetelmien vertailukohteille saatiin määrällisesti samankaltaiset tulokset, mutta niiden sisältämät patentit eivät olleet pääsäännöllisesti samoja. Työssä tarkastellaan myös Toyotan, Daimlerin ja Fordin vihreiden autoteknologiapolkujen kehitystä. Varsinkin Toyota ja Daimler tulevat yhä enemmän panostamaan sähkö- ja hybridiautoihin verrattuna polttomoottoriautoihin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Illnesses related to the heart are one of the major reasons for death all over the world causing many people to lose their lives in last decades. The good news is that many of those sicknesses are preventable if they are spotted in early stages. On the other hand, the number of the doctors are much lower than the number of patients. This will makes the auto diagnosing of diseases even more and more essential for humans today. Furthermore, when it comes to the diagnosing methods and algorithms, the current state of the art is lacking a comprehensive study on the comparison between different diagnosis solutions. Not having a single valid diagnosing solution has increased the confusion among scholars and made it harder for them to take further steps. This master thesis will address the issue of reliable diagnosing algorithm. We investigate ECG signals and the relation between different diseases and the heart’s electrical activity. Also, we will discuss the necessary steps needed for auto diagnosing the heart diseases including the literatures discussing the topic. The main goal of this master thesis is to find a single reliable diagnosing algorithm and quest for the best classifier to date for heart related sicknesses. Five most suited and most well-known classifiers, such as KNN, CART, MLP, Adaboost and SVM, have been investigated. To have a fair comparison, the ex-periment condition is kept the same for all classification methods. The UCI repository arrhythmia dataset will be used and the data will not be preprocessed. The experiment results indicates that AdaBoost noticeably classifies different diseases with a considera-bly better accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Luokittelujärjestelmää suunniteltaessa tarkoituksena on rakentaa systeemi, joka pystyy ratkaisemaan mahdollisimman tarkasti tutkittavan ongelma-alueen. Hahmontunnistuksessa tunnistusjärjestelmän ydin on luokitin. Luokittelun sovellusaluekenttä on varsin laaja. Luokitinta tarvitaan mm. hahmontunnistusjärjestelmissä, joista kuvankäsittely toimii hyvänä esimerkkinä. Myös lääketieteen parissa tarkkaa luokittelua tarvitaan paljon. Esimerkiksi potilaan oireiden diagnosointiin tarvitaan luokitin, joka pystyy mittaustuloksista päättelemään mahdollisimman tarkasti, onko potilaalla kyseinen oire vai ei. Väitöskirjassa on tehty similaarisuusmittoihin perustuva luokitin ja sen toimintaa on tarkasteltu mm. lääketieteen paristatulevilla data-aineistoilla, joissa luokittelutehtävänä on tunnistaa potilaan oireen laatu. Väitöskirjassa esitetyn luokittimen etuna on sen yksinkertainen rakenne, josta johtuen se on helppo tehdä sekä ymmärtää. Toinen etu on luokittimentarkkuus. Luokitin saadaan luokittelemaan useita eri ongelmia hyvin tarkasti. Tämä on tärkeää varsinkin lääketieteen parissa, missä jo pieni tarkkuuden parannus luokittelutuloksessa on erittäin tärkeää. Väitöskirjassa ontutkittu useita eri mittoja, joilla voidaan mitata samankaltaisuutta. Mitoille löytyy myös useita parametreja, joille voidaan etsiä juuri kyseiseen luokitteluongelmaan sopivat arvot. Tämä parametrien optimointi ongelma-alueeseen sopivaksi voidaan suorittaa mm. evoluutionääri- algoritmeja käyttäen. Kyseisessä työssä tähän on käytetty geneettistä algoritmia ja differentiaali-evoluutioalgoritmia. Luokittimen etuna on sen joustavuus. Ongelma-alueelle on helppo vaihtaa similaarisuusmitta, jos kyseinen mitta ei ole sopiva tutkittavaan ongelma-alueeseen. Myös eri mittojen parametrien optimointi voi parantaa tuloksia huomattavasti. Kun käytetään eri esikäsittelymenetelmiä ennen luokittelua, tuloksia pystytään parantamaan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internet on elektronisen postin perusrakenne ja ollut tärkeä tiedonlähde akateemisille käyttäjille jo pitkään. Siitä on tullut merkittävä tietolähde kaupallisille yrityksille niiden pyrkiessä pitämään yhteyttä asiakkaisiinsa ja seuraamaan kilpailijoitansa. WWW:n kasvu sekä määrällisesti että sen moninaisuus on luonut kasvavan kysynnän kehittyneille tiedonhallintapalveluille. Tällaisia palveluja ovet ryhmittely ja luokittelu, tiedon löytäminen ja suodattaminen sekä lähteiden käytön personointi ja seuranta. Vaikka WWW:stä saatavan tieteellisen ja kaupallisesti arvokkaan tiedon määrä on huomattavasti kasvanut viime vuosina sen etsiminen ja löytyminen on edelleen tavanomaisen Internet hakukoneen varassa. Tietojen hakuun kohdistuvien kasvavien ja muuttuvien tarpeiden tyydyttämisestä on tullut monimutkainen tehtävä Internet hakukoneille. Luokittelu ja indeksointi ovat merkittävä osa luotettavan ja täsmällisen tiedon etsimisessä ja löytämisessä. Tämä diplomityö esittelee luokittelussa ja indeksoinnissa käytettävät yleisimmät menetelmät ja niitä käyttäviä sovelluksia ja projekteja, joissa tiedon hakuun liittyvät ongelmat on pyritty ratkaisemaan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in machine learning methods enable increasingly the automatic construction of various types of computer assisted methods that have been difficult or laborious to program by human experts. The tasks for which this kind of tools are needed arise in many areas, here especially in the fields of bioinformatics and natural language processing. The machine learning methods may not work satisfactorily if they are not appropriately tailored to the task in question. However, their learning performance can often be improved by taking advantage of deeper insight of the application domain or the learning problem at hand. This thesis considers developing kernel-based learning algorithms incorporating this kind of prior knowledge of the task in question in an advantageous way. Moreover, computationally efficient algorithms for training the learning machines for specific tasks are presented. In the context of kernel-based learning methods, the incorporation of prior knowledge is often done by designing appropriate kernel functions. Another well-known way is to develop cost functions that fit to the task under consideration. For disambiguation tasks in natural language, we develop kernel functions that take account of the positional information and the mutual similarities of words. It is shown that the use of this information significantly improves the disambiguation performance of the learning machine. Further, we design a new cost function that is better suitable for the task of information retrieval and for more general ranking problems than the cost functions designed for regression and classification. We also consider other applications of the kernel-based learning algorithms such as text categorization, and pattern recognition in differential display. We develop computationally efficient algorithms for training the considered learning machines with the proposed kernel functions. We also design a fast cross-validation algorithm for regularized least-squares type of learning algorithm. Further, an efficient version of the regularized least-squares algorithm that can be used together with the new cost function for preference learning and ranking tasks is proposed. In summary, we demonstrate that the incorporation of prior knowledge is possible and beneficial, and novel advanced kernels and cost functions can be used in algorithms efficiently.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technology scaling has proceeded into dimensions in which the reliability of manufactured devices is becoming endangered. The reliability decrease is a consequence of physical limitations, relative increase of variations, and decreasing noise margins, among others. A promising solution for bringing the reliability of circuits back to a desired level is the use of design methods which introduce tolerance against possible faults in an integrated circuit. This thesis studies and presents fault tolerance methods for network-onchip (NoC) which is a design paradigm targeted for very large systems-onchip. In a NoC resources, such as processors and memories, are connected to a communication network; comparable to the Internet. Fault tolerance in such a system can be achieved at many abstraction levels. The thesis studies the origin of faults in modern technologies and explains the classification to transient, intermittent and permanent faults. A survey of fault tolerance methods is presented to demonstrate the diversity of available methods. Networks-on-chip are approached by exploring their main design choices: the selection of a topology, routing protocol, and flow control method. Fault tolerance methods for NoCs are studied at different layers of the OSI reference model. The data link layer provides a reliable communication link over a physical channel. Error control coding is an efficient fault tolerance method especially against transient faults at this abstraction level. Error control coding methods suitable for on-chip communication are studied and their implementations presented. Error control coding loses its effectiveness in the presence of intermittent and permanent faults. Therefore, other solutions against them are presented. The introduction of spare wires and split transmissions are shown to provide good tolerance against intermittent and permanent errors and their combination to error control coding is illustrated. At the network layer positioned above the data link layer, fault tolerance can be achieved with the design of fault tolerant network topologies and routing algorithms. Both of these approaches are presented in the thesis together with realizations in the both categories. The thesis concludes that an optimal fault tolerance solution contains carefully co-designed elements from different abstraction levels

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Female sexual dysfunctions, including desire, arousal, orgasm and pain problems, have been shown to be highly prevalent among women around the world. The etiology of these dysfunctions is unclear but associations with health, age, psychological problems, and relationship factors have been identified. Genetic effects explain individual variation in orgasm function to some extent but until now quantitative behavior genetic analyses have not been applied to other sexual functions. In addition, behavior genetics can be applied to exploring the cause of any observed comorbidity between the dysfunctions. Discovering more about the etiology of the dysfunctions may further improve the classification systems which are currently under intense debate. The aims of the present thesis were to evaluate the psychometric properties of a Finnish-language version of a commonly used questionnaire for measuring female sexual function, the Female Sexual Function Index (FSFI), in order to investigate prevalence, comorbidity, and classification, and to explore the balance of genetic and environmental factors in the etiology as well as the associations of a number of biopsychosocial factors with female sexual functions. Female sexual functions were studied through survey methods in a population based sample of Finnish twins and their female siblings. There were two waves of data collection. The first data collection targeted 5,000 female twins aged 33–43 years and the second 7,680 female twins aged 18–33 and their over 18–year-old female siblings (n = 3,983). There was no overlap between the data collections. The combined overall response rate for both data collections was 53% (n = 8,868), with a better response rate in the second (57%) compared to the first (45%). In order to measure female sexual function, the FSFI was used. It includes 19 items which measure female sexual function during the previous four weeks in six subdomains; desire, subjective arousal, lubrication, orgasm, sexual satisfaction, and pain. In line with earlier research in clinical populations, a six factor solution of the Finnish-language version of the FSFI received supported. The internal consistencies of the scales were good to excellent. Some questions about how to avoid overestimating the prevalence of extreme dysfunctions due to women being allocated the score of zero if they had had no sexual activity during the preceding four weeks were raised. The prevalence of female sexual dysfunctions per se ranged from 11% for lubrication dysfunction to 55% for desire dysfunction. The prevalence rates for sexual dysfunction with concomitant sexual distress, in other words, sexual disorders were notably lower ranging from 7% for lubrication disorder to 23% for desire disorder. The comorbidity between the dysfunctions was substantial most notably between arousal and lubrication dysfunction even if these two dysfunctions showed distinct patterns of associations with the other dysfunctions. Genetic influences on individual variation in the six subdomains of FSFI were modest but significant ranging from 3–11% for additive genetic effects and 5–18% for nonadditive genetic effects. The rest of the variation in sexual functions was explained by nonshared environmental influences. A correlated factor model, including additive and nonadditive genetic effects and nonshared environmental effects had the best fit. All in all, every correlation between the genetic factors was significant except between lubrication and pain. All correlations between the nonshared environment factors were significant showing that there is a substantial overlap in genetic and nonshared environmental influences between the dysfunctions. In general, psychological problems, poor satisfaction with the relationship, sexual distress, and poor partner compatibility were associated with more sexual dysfunctions. Age was confounded with relationship length but had over and above relationship length a negative effect on desire and sexual satisfaction and a positive effect on orgasm and pain functions. Alcohol consumption in general was associated with better desire, arousal, lubrication, and orgasm function. Women pregnant with their first child had fewer pain problems than nulliparous nonpregnant women. Multiparous pregnant women had more orgasm problems compared to multiparous nonpregnant women. Having children was associated with less orgasm and pain problems. The conclusions were that desire, subjective arousal, lubrication, orgasm, sexual satisfaction, and pain are separate entities that have distinct associations with a number of different biopsychosocial factors. However, there is also considerable comorbidity between the dysfunctions which are explained by overlap in additive genetic, nonadditive genetic and nonshared environmental influences. Sexual dysfunctions are highly prevalent and are not always associated with sexual distress and this relationship might be moderated by a good relationship and compatibility with partner. Regarding classification, the results supports separate diagnoses for subjective arousal and genital arousal as well as the inclusion of pain under sexual dysfunctions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The papermaking industry has been continuously developing intelligent solutions to characterize the raw materials it uses, to control the manufacturing process in a robust way, and to guarantee the desired quality of the end product. Based on the much improved imaging techniques and image-based analysis methods, it has become possible to look inside the manufacturing pipeline and propose more effective alternatives to human expertise. This study is focused on the development of image analyses methods for the pulping process of papermaking. Pulping starts with wood disintegration and forming the fiber suspension that is subsequently bleached, mixed with additives and chemicals, and finally dried and shipped to the papermaking mills. At each stage of the process it is important to analyze the properties of the raw material to guarantee the product quality. In order to evaluate properties of fibers, the main component of the pulp suspension, a framework for fiber characterization based on microscopic images is proposed in this thesis as the first contribution. The framework allows computation of fiber length and curl index correlating well with the ground truth values. The bubble detection method, the second contribution, was developed in order to estimate the gas volume at the delignification stage of the pulping process based on high-resolution in-line imaging. The gas volume was estimated accurately and the solution enabled just-in-time process termination whereas the accurate estimation of bubble size categories still remained challenging. As the third contribution of the study, optical flow computation was studied and the methods were successfully applied to pulp flow velocity estimation based on double-exposed images. Finally, a framework for classifying dirt particles in dried pulp sheets, including the semisynthetic ground truth generation, feature selection, and performance comparison of the state-of-the-art classification techniques, was proposed as the fourth contribution. The framework was successfully tested on the semisynthetic and real-world pulp sheet images. These four contributions assist in developing an integrated factory-level vision-based process control.