15 resultados para Chromosomal aberrations
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The integrin family of transmembrane receptors are important for cell-matrix adhesion and signal transmission to the interior of the cell. Integrins are essential for many physiological processes and defective integrin function can consequently result in a multitude of diseases, including cancer. Integrin traffic is needed for completion of cytokinesis and cell division failure has been proposed to be an early event in the formation of chromosomally aberrant and transformed cells. Impaired integrin traffic and changes in integrin expression are known to promote invasion of malignant cells. However, the direct roles of impaired integrin traffic in tumorigenesis and increased integrin expression in oncogene driven invasion have not been examined. In this study we have investigated both of these aspects. We found that cells with reduced integrin endocytosis become binucleate and subsequently aneuploid. These aneuploid cells display characteristics of transformed cells; they are anchorage-independent, resistant to apoptosis and invasive in vitro. Importantly, subcutaneous injection of the aneuploid cells into athymic nude mice produced highly malignant tumors. Through gene expression profiling and analysis of integrin-triggered signaling pathways we have identified several molecules involved in the malignancy of these cells, including Src kinase and the transcription factor Twist2. Thus, even though chromosomal aberrations are associated with reduced cell fitness, we show that aneuploidy can facilitate tumor evolution and selection of transformed cells. Invasion and metastasis are the primary reason for deaths caused by cancer and the molecular pathways responsible for invasion are therefore attractive targets in cancer therapy. In addition to integrins, another major family of adhesion receptors are the proteoglycans syndecans. Integrins and syndecans are known to signal in a synergistic manner in controlling cell adhesion on 2D matrixes. Here we explored the role of syndecans as α2β1 integrin co-receptors in 3D collagen. We show that in breast cancer cells harbouring mutant K-Ras, increased levels of integrins, their co-receptors syndecans and matrix cleaving proteases are necessary for the invasive phenotype of these cells. Together, these findings increase our knowledge of the complicated changes that occur during tumorigenesis and the pathways that control the ability of cancer cells to invade and metastasize.
Resumo:
During mitosis, the duplicated genome must be accurately divided between two daughter cells. Polo-like kinase 1 (Plk1) and Aurora B kinase, together with its binding partners Incenp, Survivin and Borealin (chromosomal passenger complex, CPC), have key roles in coordinating mitotic events. The accuracy of cell division is safeguarded by a signaling cascade termed the mitotic spindle checkpoint (SC), which ensures that chromosomes are not physically separated before correct bipolar attachments have been formed between kinetochores and spindle microtubules (MT). An inhibitory “wait anaphase” signal, which delays chromosome separation (anaphase onset), is created at individual kinetochores and broadcasted throughout the cell in response to lack of kinetochore-microtubule (kMT) attachment or proper interkinetochore tension. It is believed that the fast turnover of SC molecules at kinetochores contributes to the cell’s ability to produce this signal and enables rapid responses to changing cellular conditions. Kinetochores that lack MT attachment and tension express a certain phosphoepitope called the 3F3/2 phosphoepitope, which has been linked to SC signaling. In the experimental part, we investigated the regulation of the 3F3/2 phosphoepitope, analyzed whether CPC molecules turn over at centromeres, and dissected the mitotic roles of the CPC using a microinjection technique that allowed precise temporal control over its function. We found that the kinetochore 3F3/2 phosphoepitope is created by Plk1, and that CPC proteins exhibit constant exchange at centromeres. Moreover, we found that CPC function is necessary in the regulation of chromatid movements and spindle morphology in anaphase. In summary, we identified new functions of key mitotic regulators Plk1 and CPC, and provided insighs into the coordination of mitotic events.
Resumo:
Työn tavoitteena oli selvittää yrityksen käytössä olevaa läpimenoajan laskentakaavaa, sekä löytää keinoja ja toimintamalleja läpimenoajan lyhentämiseen lähinnä puolivalmisteiden osalta. Taustalla on konsernin tavoitteet lyhentää läpimenoaikoja. Työ keskittyi kahteen liiketoimintayksikköön, jotka ovat rakennuslukitus ja laitelukitus. Näillä liiketoimintayksiköillä läpimenoajat ovat selvästi konsernin keskiarvoa korkeammat. Ensin selvitettiin nykytilannetta nimikeanalyysien ja haastattelujen avulla. Läpimenoajan laskentakaavan osatekijät esiteltiin. Seuraavaksi tutkittiin vaikutusmahdollisuuksia laskentakaavan osatekijöihin. Lisäksi laadittiin eräkokojen keskinäisten valmistuserien laskentaan LIMIT-tekniikalla toteutettu laskentataulukko, jota hyödyntämällä varastoissa oleviin nimikkeisiin sitoutunutta pääomaa pystytään minimoimaan. Toimenpide-ehdotuksena esitetään vuosia varastoissa seisseiden nimikkeiden hävittämistä, sekä nimikekohtaisten asetusaikojen selvittämistä ja niiden systemaattista lyhentämistä. Lisäksi ehdotetaan siirtymistä omakustannehinnoittelusta keskivarastohinnoitteluun myös puolivalmisteiden kohdalla. Tällöin laskentakaavaan syntyvät vääristymät saadaan poistettua.
Resumo:
Hedelmättömyyttä aiheuttavan siittiöiden puolihäntävian molekyyligenetiikka Suomalaisissa Yorkshire karjuissa yleistyi 1990-luvun lopulla autosomaalisesti ja resessiivisesti periytyvä hedelmättömyyttä aiheuttava siittiöiden puolihäntävika (ISTS, immotile short tail sperm). Sairaus aiheuttaa normaalia lyhyemmän ja täysin liikkumattoman siittiön hännän muodostuksen. Muita oireita sairailla karjuilla ei ole havaittu ja emakot ovat oireettomia. Tämän tutkimuksen tarkoituksena oli kartoittaa siittiöiden puolihäntävian aiheuttava geenivirhe ja kehittää DNA-testi markkeri- ja geeniavusteiseen valintaan. Koko genomin kartoituksessa vian aiheuttava alue paikannettiin sian kromosomiin 16. Paikannuksen perusteella kahden geenimerkin haplotyyppi kehitettiin käytettäväksi markkeri-avusteisessa valinnassa. Sairauteen kytkeytyneen alueen hienokartoitusta jatkettiin geenitestin kehittämiseksi kantajadiagnostiikkaan. Vertailevalla kartoituksella oireeseen kytkeytynyt alue paikannettiin 2 cM:n alueelle ihmisen kromosomiin viisi (5p13.2). Tällä alueella sijaitsevia geenejä vastaavista sian sekvensseistä löydetyn muuntelun perusteella voitiin tarkentaa sairauteen kytkeytyneitä haplotyyppejä. Haplotyyppien perusteella puolihäntäoireeseen kytkeytynyt alue rajattiin kahdeksan geenin alueelle ihmisen geenikartalla. Alueelle paikannetun kandidaattigeenin (KPL2) sekvensointi paljasti introniin liittyneen liikkuvan DNA-sekvenssin, Line-1 retroposonin. Tämä retroposoni muuttaa geenin silmikointia siten, että sitä edeltävä eksoni jätetään pois tai myös osa introni- ja inserttisekvenssiä liitetään geenin mRNA tuotteeseen. Molemmissa tapauksissa tuloksena on lyhentynyt KPL2 proteiini. Tähän retroposoni-inserttiin perustuva geenitesti on ollut sianjalostajien käytössä vuodesta 2006. KPL2 geenin ilmenemisen tarkastelu sialla ja hiirellä paljasti useita kudosspesifisiä silmikointimuotoja. KPL2 geenin pitkä muoto ilmenee pääasiassa vain kiveksessä, mikä selittää geenivirheen aiheuttamat erityisesti siittiön kehitykseen liittyvät oireet. KPL2 proteiinin ilmeneminen hiiren siittiön hännän kehityksen aikana ja mahdollinen yhteistoiminta IFT20 proteiinin kanssa viittaavat tehtävään proteiinien kuljetuksessa siittiön häntään. Mahdollisen kuljetustehtävän lisäksi KPL2 saattaa toimia myös siittiön hännän rakenneosana, koska se paikannettiin valmiin siittiön hännän keskiosaan. Lisäksi KPL2 proteiini saattaa myös toimia Golgin laitteessa sekä Sertolin solujen ja spermatidien liitoksissa, mutta nämä havainnot kuitenkin vaativat lisätutkimuksia. Tämän tutkimuksen tulokset osoittavat, että KPL2 geeni on tärkeä siittiön hännän kehitykselle ja sen rakennemuutos aiheuttaa siittiöiden puolihäntäoireen suomalaisilla Yorkshire karjuilla. KPL2 proteiinin ilmeneminen ja paikannus siittiön kehityksen aikana antaa viitteitä proteiinin toiminnasta. Koska KPL2 geenisekvenssi on erittäin konservoitunut, nämä tulokset tuovat uutta tietoa kaikkien nisäkkäiden siittiöiden kehitykseen ja urosten hedelmättömyyteen syihin.
Resumo:
Integrins are heterodimeric adhesion receptors mediating adhesion to extracellular matrix proteins and to other cells. Integrins are important in embryonic development, structural integrity of connective tissue, blood thrombus formation, and immune defense system. Integrins are transmembrane proteins whose ligand binding capacity (activity) is regulated by large conformational changes. Extracellular ligand binding or intracellular effector binding to integrin cytoplasmic face regulate integrin activity. Integrins are thus able to mediate bi-directional signaling. Integrin function is also regulated by intracellular location. Integrins are constantly recycled from endocytic vesicles to plasma membrane, and this has been shown to be important for cell migration and invasion as well. Deregulation of integrin functionality can lead to deleterious illnesses, such as bleeding or inflammatory disorders. It is also evident that integrin deregulation is associated with cancer progression. In this study, a novel Beta1 integrin associating protein, Rab21, was characterized. Rab21 binding to integrin cytoplasmic tail was shown to be important for Beta1 integrin endo- and exocytosis – intracellular trafficking. It was furher shown that this interaction has an important role in cell adhesion, migration, as well as in the final step of cell division, cytokinesis. This work showed that abrogation of Rab21 function or β1 integrin endocytic traffic, can lead to defects in cell division and results in formation of multinucleated cells. Multinucleation and especially tetraploidy can be a transient pathway to aneuploidy and tumorigenesis. This work characterized chromosomal deletions in rab21 locus in ovarian and prostate cancer samples and showed that a cell line with rab21 deletion also had impairment in cell division, which could be rescued by Rab21 re-expression. The work demonstrates an important role for Rab21 and Beta1 integrin traffic regulation in cell adhesion and division, and suggests a probable associaton with tumorigenesis. In this study, Beta1 integrin activity regulation was also addressed. A novel cell array platform for genome-scale RNAi screenings was characterized here. More than 4500 genes were knocked-down in prostate cancer cells using siRNA-mediated silencing. The effects on Beta1 integrin activity were analyzed upon knock-downs. The screen identified more that 400 putative regulators of Beta1 integrin activity in prostate cancer. In conclusion, this work will help us to understand complex regulatory pathways involved in cancer cell adhesion and migration.
Resumo:
Salmonella enterica – Fluorokinoloni- ja makrolidiresistenssimekanisimit Vakavia salmonellainfektioita on pitkään hoidettu fluorokinoloniantibiooteilla, kuten siprofloksasiinilla. Fluorokinolonien runsas käyttö niin ihmisillä kuin eläimilläkin on kuitenkin johtanut fluorokinoloniresistenttien salmonellakantojen lisääntymiseen. Vuoteen 2002 asti kaikki matalan tason fluorokinoloniresistenssiä ilmentävät salmonellakannat olivat resistenttejä nalidiksiinihapolle, joka on vanha ensimmäisen polven kinoloniantibiootti jota ei enää käytetä infektioiden hoidossa. Vuonna 2003 havaitsimme aivan uudentyyppisen resistenssifenotyypin salmonelloissa. Kaikki uuden fenotyypin kannat osoittivat matalaa fluorokinoloniresistenssiä (MIC ≥0.125 mg/L), mutta useat kannat olivat yllättäen aikaisempaa herkempiä nalidiksiinihapolle (MIC ≤32 mg/L). Ilmiöllä on suuri merkitys salmonellan antibioottiherkkyyksien määrittämisessä, sillä jos kanta on ollut nalidiksiinihapolle herkkä, sitä on pidetty herkkänä myös fluorokinoloneille. Väitöskirjatyössä määritettiin vuosina 2003–2007 Suomessa kerättyjen kotimaisten ja ulkomaalaisten S. enterica -kantojen fluorokinoloniresistenssiä sekä tutkittiin uuden salmonellafenotyypin epidemiologiaa ja resistenssimekanismeja. Lisäksi tutkittiin salmonellan hoidossa mahdollisesti käyttökelpoisen makrolidiantibioottijohdannaisen, atsitromysiinin tehoa salmonelloihin ja erityisesti matalaa fluorokinoloniresistenssiä ilmentäviin kantoihin. Tutkimuksessa havaittiin, että matalaa fluorokinoloniresistenssiä osoittavien salmonellakantojen määrä vähenee. Lasku oli voimakkainta Kaakkois-Aasiasta tuoduissa kannoissa. Uusi resistenssifenotyyppi on plasmidivälitteinen ja qnr-geenit olivat ainoa plasmidivälitteinen kinoloniresistenssimekanismi, joka kannoista löydettiin. Myöskään kromosomaalisten gyrA, gyrB ja parE -geenien QRDR-alueelta ei löydetty fluorokinoloniresistenssiä aiheuttavia mutaatioita. Transformaatiolla osoitettiin qnr-plasmidien olevan siirtyviä ja uusi resistenssifenotyyppi saatiin ilmennettyä myös herkässä vastaanottajakannassa. Nämä tulokset osoittavat, että vaikka S. enterican qnr-fenotyyppi on toistaiseksi levinnyt pääasiassa Kaakkois-Aasiaan, se siirtyy helposti bakteerista toiseen ja tulee todennäköisesti aiheuttamaan hoito-ongelmia myös muualla maailmassa. Uudentyyppinen qnr-fenotyyppi voi olla vaikea havaita perinteisellä herkkyysmäärityksellä. Siksi laboratorioissa tulisi aina määrittää sekä siprofloksasiiniettä nalidiksiinihappoherkkyydet. Atsitromysiinin osoitettiin olevan herkkyysmääritysten mukaan tehokas salmonelloja kohtaan mukaanlukien matala-asteista fluorokinoloniresistenssiä ilmentävät bakteerikannat.
Resumo:
During mitotic cell division, the genetic material packed into chromosomes is divided equally between two daughter cells. Before the separation of the two copies of a chromosome (sister chromatids), each chromosome has to be properly connected with microtubules of the mitotic spindle apparatus and aligned to the centre of the cell. The spindle assembly checkpoint (SAC) monitors connections between microtubules and chromosomes as well as tension applied across the centromere. Microtubules connect to a chromosome via kinetochores, which are proteinaceous organelles assembled onto the centromeric region of the sister chromatids. Improper kinetochore-microtubule attachments activate the SAC and block chromosome segregation until errors are corrected and all chromosomes are connected to the mitotic spindle in a bipolar manner. The purpose of this surveillance mechanism is to prevent loss or gain of chromosomes in daughter cells that according to current understanding contributes to cancer formation. Numerous proteins participate in the regulation of mitotic progression. In this thesis, the mitotic tasks of three kinetochore proteins, Shugoshin 1 (Sgo1), INCENP, and p38 MAP kinase (p38 MAPK), were investigated. Sgo1 is a protector of centromeric cohesion. It is also described in the tension-sensing mechanism of the SAC and in the regulation of kinetochore-microtubule connections. Our results revealed a central role for Sgo1 in a novel branch of kinetochore assembly. INCENP constitutes part of the chromosomal passenger complex (CPC). The other members of the core complex are the Aurora B kinase, Survivin and Borealin. CPC is an important regulatory element of cell division having several roles at various stages of mitosis. Our results indicated that INCENP and Aurora B are highly dynamic proteins at the mitotic centromeres and suggested a new role for CPC in regulation of chromosome movements and spindle structure during late mitosis. The p38 MAPK has been implicated in G1 and G2 checkpoints during the cell cycle. However, its role in mitotic progression and control of SAC signaling has been controversial. In this thesis, we discovered a novel function for p38γ MAPK in chromosome orientation and spindle structure as well as in promotion of viability of mitotic cells.
Resumo:
Dietary and microbial factors are thought to contribute to the rapidly increasing prevalence of T1D in many countries worldwide. The impact of these factors on immune regulation and diabetes development in non-obese diabetic (NOD) mice are investigated in this thesis. Diabetes can be prevented in NOD mice through dietary manipulation. Diet affects the composition of intestinal microbiota, which may subsequently influence intestinal immune homeostasis. However, the specific effects of anti-diabetogenic diets on gut immunity and the explicit associations between intestinal immune disruption and type 1 diabetes onset remain unclear. The research presented herein demonstrates that newly weaned NOD mice suffer from a mild level of colitis, which shifts the colonic immune cell balance towards a proinflammatory status. Several aberrations can also be observed in the peritoneal B cells of NOD mice; an increase in activation marker expression, increased trafficking to the pancreatic lymph nodes and significantly higher antigen presenting cell (APC) efficiency towards insulin-specific T cells. A shift towards inflammation is likewise observed in the colon of germ-free NOD mice, but signs of peritoneal B cell activation are lacking in these mice. Remarkably, most of the abnormalities in the colon, peritoneal macrophages and the peritoneal B cell APC activity of NOD mice are abrogated when NOD mice are maintained on a diabetes-preventive, soy-based diet (ProSobee) from the time of weaning. Dietary and microbial factors hence have a significant impact on colonic immune regulation and peritoneal B cell activation and it is suggested that these factors influence diabetes development in NOD mice.
Resumo:
Mitochondria are present in all eukaryotic cells. They enable these cells utilize oxygen in the production of adenosine triphosphate in the oxidative phosphorylation system, the mitochondrial respiratory chain. The concept ‘mitochondrial disease’ conventionally refers to disorders of the respiratory chain that lead to oxidative phosphorylation defect. Mitochondrial disease in humans can present at any age, and practically in any organ system. Mitochondrial disease can be inherited in maternal, autosomal dominant, autosomal recessive, or X-chromosomal fashion. One of the most common molecular etiologies of mitochondrial disease in population is the m.3243A>G mutation in the MT-TL1 gene, encoding mitochondrial tRNALeu(UUR). Clinical evaluation of patients with m.3243A>G has revealed various typical clinical features, such as stroke-like episodes, diabetes mellitus and sensorineural hearing loss. The prevalence and clinical characteristics of mitochondrial disease in population are not well known. This thesis consists of a series of studies, in which the prevalence and characteristics of mitochondrial disease in the adult population of Southwestern Finland were assessed. Mitochondrial haplogroup Uk was associated with increased risk of occipital ischemic stroke among young women. Large-scale mitochondrial DNA deletions and mutations of the POLG1 gene were the most common molecular etiologies of progressive external ophthalmoplegia. Around 1% of diabetes mellitus emerging between the ages 18 – 45 years was associated with the m.3243A>G mutation. Moreover, among these young diabetic patients, mitochondrial haplogroup U was associated with maternal family history of diabetes. These studies demonstrate the usefulness of carefully planned molecular epidemiological investigations in the study of mitochondrial disorders.
Resumo:
CHARGE syndrome, Sotos syndrome and 3p deletion syndrome are examples of rare inherited syndromes that have been recognized for decades but for which the molecular diagnostics only have been made possible by recent advances in genomic research. Despite these advances, development of diagnostic tests for rare syndromes has been hindered by diagnostic laboratories having limited funds for test development, and their prioritization of tests for which a (relatively) high demand can be expected. In this study, the molecular diagnostic tests for CHARGE syndrome and Sotos syndrome were developed, resulting in their successful translation into routine diagnostic testing in the laboratory of Medical Genetics (UTUlab). In the CHARGE syndrome group, mutation was identified in 40.5% of the patients and in the Sotos syndrome group, in 34%, reflecting the use of the tests in routine diagnostics in differential diagnostics. In CHARGE syndrome, the low prevalence of structural aberrations was also confirmed. In 3p deletion syndrome, it was shown that small terminal deletions are not causative for the syndrome, and that testing with arraybased analysis provides a reliable estimate of the deletion size but benign copy number variants complicate result interpretation. During the development of the tests, it was discovered that finding an optimal molecular diagnostic strategy for a given syndrome is always a compromise between the sensitivity, specificity and feasibility of applying a new method. In addition, the clinical utility of the test should be considered prior to test development: sometimes a test performing well in a laboratory has limited utility for the patient, whereas a test performing poorly in the laboratory may have a great impact on the patient and their family. At present, the development of next generation sequencing methods is changing the concept of molecular diagnostics of rare diseases from single tests towards whole-genome analysis.
The spindle assembly checkpoint as a drug target - Novel small-molecule inhibitors of Aurora kinases
Resumo:
Cell division (mitosis) is a fundamental process in the life cycle of a cell. Equal distribution of chromosomes between the daughter cells is essential for the viability and well-being of an organism: loss of fidelity of cell division is a contributing factor in human cancer and also gives rise to miscarriages and genetic birth defects. For maintaining the proper chromosome number, a cell must carefully monitor cell division in order to detect and correct mistakes before they are translated into chromosomal imbalance. For this purpose an evolutionarily conserved mechanism termed the spindle assembly checkpoint (SAC) has evolved. The SAC comprises a complex network of proteins that relay and amplify mitosis-regulating signals created by assemblages called kinetochores (KTs). Importantly, minor defects in SAC signaling can cause loss or gain of individual chromosomes (aneuploidy) which promotes tumorigenesis while complete failure of SAC results in cell death. The latter event has raised interest in discovery of low molecular weight (LMW) compounds targeting the SAC that could be developed into new anti-cancer therapeutics. In this study, we performed a cell-based, phenotypic high-throughput screen (HTS) to identify novel LMW compounds that inhibit SAC function and result in loss of cancer cell viability. Altogether, we screened 65 000 compounds and identified eight that forced the cells prematurely out of mitosis. The flavonoids fisetin and eupatorin, as well as the synthetic compounds termed SACi2 and SACi4, were characterized in more detail utilizing versatile cell-based and biochemical assays. To identify the molecular targets of these SAC-suppressing compounds, we investigated the conditions in which SAC activity became abrogated. Eupatorin, SACi2 and SACi4 preferentially abolished the tensionsensitive arm of the SAC, whereas fisetin lowered also the SAC activity evoked by lack of attachments between microtubules (MTs) and KTs. Consistent with the abrogation of SAC in response to low tension, our data indicate that all four compounds inhibited the activity of Aurora B kinase. This essential mitotic protein is required for correction of erratic MT-KT attachments, normal SAC signaling and execution of cytokinesis. Furthermore, eupatorin, SACi2 and SACi4 also inhibited Aurora A kinase that controls the centrosome maturation and separation and formation of the mitotic spindle apparatus. In line with the established profound mitotic roles of Aurora kinases, these small compounds perturbed SAC function, caused spindle abnormalities, such as multi- and monopolarity and fragmentation of centrosomes, and resulted in polyploidy due to defects in cytokinesis. Moreover, the compounds dramatically reduced viability of cancer cells. Taken together, using a cell-based HTS we were able to identify new LMW compounds targeting the SAC. We demonstrated for the first time a novel function for flavonoids as cellular inhibitors of Aurora kinases. Collectively, our data support the concept that loss of mitotic fidelity due to a non-functional SAC can reduce the viability of cancer cells, a phenomenon that may possess therapeutic value and fuel development of new anti-cancer drugs.
Resumo:
Recurrent castration resistant prostate cancer remains a challenge for cancer therapies and novel treatment options in addition to current anti-androgen and mitosis inhibitors are needed. Aberrations in epigenetic enzymes and chromatin binding proteins have been linked to prostate cancer and they may form a novel class of drug targets in the future. In this thesis we systematically evaluated the epigenenome as a prostate cancer drug target. We functionally silenced 615 known and putative epigenetically active protein coding genes in prostate cancer cell lines using high throughput RNAi screening and evaluated the effects on cell proliferation, androgen receptor (AR) expression and histone patterns. Histone deacetylases (HDACs) were found to regulate AR expression. Furthermore, HDAC inhibitors reduced AR signaling and inhibited synergistically with androgen deprivation prostate cancer cell proliferation. In particular, TMPRSS2- EGR fusion gene positive prostate cancer cell lines were sensitive to combined HDAC and AR inhibition, which may partly be related to the dependency of a fusion gene induced epigenetic pathway. Histone demethylases (HDMs) were identified to regulate prostate cancer cell line proliferation. We discovered a novel histone JmjC-domain histone demethylase PHF8 to be highly expressed in high grade prostate cancers and mediate cell proliferation, migration and invasion in in vitro models. Additionally, we explored novel HDM inhibitor chemical structures using virtual screening methods. The structures best fitting to the active pocket of KDM4A were tested for enzyme inhibition and prostate cancer cell proliferation activity in vitro. In conclusion, our results show that prostate cancer may efficiently be targeted with combined AR and HDAC inhibition which is also currently being tested in clinical trials. HDMs were identified as another feasible novel drug target class. Future studies in representative animal models and development of specific inhibitors may reveal HDMs full potential in prostate cancer therapy
Resumo:
Background: Maternal diabetes affects many fetal organ systems, including the vasculature and the lungs. The offspring of diabetic mothers have respiratory adaptation problems after birth. The mechanisms are multifactorial and the effects are prolonged during the postnatal period. An increasing incidence of diabetic pregnancies accentuates the importance of identifying the pathological mechanisms, which cause the metabolic and genetic changes that occur in offspring, born to diabetic mothers. Aims and methods: The aim of this thesis was to determine changes both in human umbilical cord exposed to maternal type 1 diabetes and in neonatal rat lungs after streptozotocin-induced maternal hyperglycemia, during pregnancy. Rat lungs were used as a model for the potential disease mechanisms. Gene expression alterations were determined in human umbilical cords at birth and in rat pup lungs at two week of age. During the first two postnatal weeks, rat lung development was studied morphologically and histologically. Further, the effect of postnatal hyperoxia on hyperglycemia-primed rat lungs was investigated at one week of age to mimic the clinical situation of supplemental oxygen treatment. Results: In the umbilical cord, maternal diabetes had a major negative effect on the expression of genes involved in blood vessel development. The genes regulating vascular tone were also affected. In neonatal rat lungs, intrauterine hyperglycemia had a prolonged effect on gene expression during late alveolarization. The most affected pathway was the upregulation of extracellular matrix proteins. Newborn rat lungs exposed to intrauterine hyperglycemia had thinner saccular walls without changes in airspace size, a smaller relative lung weight and lung total tissue area, and increased cellular apoptosis and proliferation compared to control lungs, possibly reflecting an aberrant maturational adaptation. At one and two weeks of age, cell proliferation and secondary crest formation were accelerated in hyperglycemia-exposed lungs. Postnatal hyperoxic exposure, alone caused arrested alveolarization with thin-walled and enlarged alveoli. In contrast, the dual exposure of intrauterine hyperglycemia and postnatal hyperoxia resulted in the phenotype of thick septa together with arrested alveolarization and decreased number of small pulmonary arteries. Conclusions: Maternal diabetic environment seems to alter the umbilical cord gene expression profile of the regulation of vascular development and function. Fetal hyperglycemia may additionally affect the genetic regulation of the postnatal lung development and may actually induce prolonged structural alterations in neonatal lungs together with a modifying effect on the deleterious pulmonary exposure of postnatal hyperoxia. This, combined with the novel human umbilical cord gene data could serve as stepping stones for future therapies to curb developmental aberrations.
Resumo:
Heat shock factors (HSFs) are an evolutionarily well conserved family of transcription factors that coordinate stress-induced gene expression and direct versatile physiological processes in eukaryote organisms. The essentiality of HSFs for cellular homeostasis has been well demonstrated, mainly through HSF1-induced transcription of heat shock protein (HSP) genes. HSFs are important regulators of many fundamental processes such as gametogenesis, metabolic control and aging, and are involved in pathological conditions including cancer progression and neurodegenerative diseases. In each of the HSF-mediated processes, however, the detailed mechanisms of HSF family members and their complete set of target genes have remained unknown. Recently, rapid advances in chromatin studies have enabled genome-wide characterization of protein binding sites in a high resolution and in an unbiased manner. In this PhD thesis, these novel methods that base on chromatin immunoprecipitation (ChIP) are utilized and the genome-wide target loci for HSF1 and HSF2 are identified in cellular stress responses and in developmental processes. The thesis and its original publications characterize the individual and shared target genes of HSF1 and HSF2, describe HSF1 as a potent transactivator, and discover HSF2 as an epigenetic regulator that coordinates gene expression throughout the cell cycle progression. In male gametogenesis, novel physiological functions for HSF1 and HSF2 are revealed and HSFs are demonstrated to control the expression of X- and Y-chromosomal multicopy genes in a silenced chromatin environment. In stressed human cells, HSF1 and HSF2 are shown to coordinate the expression of a wide variety of genes including genes for chaperone machinery, ubiquitin, regulators of cell cycle progression and signaling. These results highlight the importance of cell type and cell cycle phase in transcriptional responses, reveal the myriad of processes that are adjusted in a stressed cell and describe novel mechanisms that maintain transcriptional memory in mitotic cell division.
Resumo:
This thesis studies metamaterial-inspired mirrors which provide the most general control over the amplitude and phase of the reflected wavefront. The goal is to explore practical possibilities in designing fully reflective electromagnetic structures with full control over reflection phase. The first part of the thesis describes a planar focusing metamirror with the focal distance less than the operating wavelength. Its practical applicability from the viewpoint of aberrations when the incident angle deviates from the normal one is verified numerically and experimentally. The results indicate that the proposed focusing metamirror can be efficiently employed in many different applications due to its advantages over other conventional mirrors. In the second part of the thesis a new theoretical concept of reflecting metasurface operation is introduced based on Huygens’ principle. This concept in contrast to known approaches takes into account all the requirements of perfect metamirror operation. The theory shows a route to improve the previously proposed metamirrors through tilting the individual inclusions of the structure at a chosen angle from normal. It is numerically tested and the results demonstrate improvements over the previous design.