7 resultados para Cauchy singular integral-equation
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Työssä on tutkittu vetojännityskuormituksen alaisena olevien hitsattujen kuormaa kantamattomien X-liitosten hitsin paikallisen geometrian variaation vaikutusta väsymislujuuteen. Muuttujina olivat reunan pyöristyssäde, kylmäjuoksun suuruus ja kylkikulma. Geometristen muuttujien parametrinen riippuvuussuhde on analysoitu usealla elementtimallilla. Väsymistarkastelu on suoritettu käyttämällä lineaaris-elastista murtumismekaniikkaa (LEFM) tasovenymätilassa ja materiaalina terästä. Särönkasvun suunnan ennustamisessaon käytetty maksimipääjännityskriteeriä sekä jännitysintensiteettikertoimet on määritetty J-integraalilla. Särön ydintymisvaihetta ei ole otettu huomioon. Rakenteen on oletettu olevan hitsatussa tilassa ja jännitysheilahdus on kokonaan tehollinen. Särön kasvunopeuden ennustamiseen on käytetty Paris'n lakia. Väsymislujuustulokset on esitetty karakteristisina väsymisluokkina (FAT) ja sovitettu parametriseksi yhtälöksi. Lopuksi väsymisanalyysin ennustamia tuloksia on verrattu saatavilla oleviin väsytystestituloksiin.
Resumo:
Bakgrunden och inspirationen till föreliggande studie är tidigare forskning i tillämpningar på randidentifiering i metallindustrin. Effektiv randidentifiering möjliggör mindre säkerhetsmarginaler och längre serviceintervall för apparaturen i industriella högtemperaturprocesser, utan ökad risk för materielhaverier. I idealfallet vore en metod för randidentifiering baserad på uppföljning av någon indirekt variabel som kan mätas rutinmässigt eller till en ringa kostnad. En dylik variabel för smältugnar är temperaturen i olika positioner i väggen. Denna kan utnyttjas som insignal till en randidentifieringsmetod för att övervaka ugnens väggtjocklek. Vi ger en bakgrund och motivering till valet av den geometriskt endimensionella dynamiska modellen för randidentifiering, som diskuteras i arbetets senare del, framom en flerdimensionell geometrisk beskrivning. I de aktuella industriella tillämpningarna är dynamiken samt fördelarna med en enkel modellstruktur viktigare än exakt geometrisk beskrivning. Lösningsmetoder för den s.k. sidledes värmeledningsekvationen har många saker gemensamt med randidentifiering. Därför studerar vi egenskaper hos lösningarna till denna ekvation, inverkan av mätfel och något som brukar kallas förorening av mätbrus, regularisering och allmännare följder av icke-välställdheten hos sidledes värmeledningsekvationen. Vi studerar en uppsättning av tre olika metoder för randidentifiering, av vilka de två första är utvecklade från en strikt matematisk och den tredje från en mera tillämpad utgångspunkt. Metoderna har olika egenskaper med specifika fördelar och nackdelar. De rent matematiskt baserade metoderna karakteriseras av god noggrannhet och låg numerisk kostnad, dock till priset av låg flexibilitet i formuleringen av den modellbeskrivande partiella differentialekvationen. Den tredje, mera tillämpade, metoden kännetecknas av en sämre noggrannhet förorsakad av en högre grad av icke-välställdhet hos den mera flexibla modellen. För denna gjordes även en ansats till feluppskattning, som senare kunde observeras överensstämma med praktiska beräkningar med metoden. Studien kan anses vara en god startpunkt och matematisk bas för utveckling av industriella tillämpningar av randidentifiering, speciellt mot hantering av olinjära och diskontinuerliga materialegenskaper och plötsliga förändringar orsakade av “nedfallande” väggmaterial. Med de behandlade metoderna förefaller det möjligt att uppnå en robust, snabb och tillräckligt noggrann metod av begränsad komplexitet för randidentifiering.
Resumo:
The objective of this Bachelor's Thesis is to find out the role of social media in the B-to-B marketing environment of the information technology industry and to discover how IT-firms utilize social media as a part of their customer reference marketing. To reach the objectives the concepts of customer reference marketing and social media are determined. Customer reference marketing can be characterized as one of the most practically relevant but academically relatively overlooked ways in which a company can leverage its customers and delivered solutions and use them as references in its marketing activities. We will cover which external and internal functions customer references have, that contribute to the growth and performance of B-to-B firms. We also address the three mechanisms of customer reference marketing which are 'status transfer', 'validation through testimonials' and 'demonstration of experience and prior performance'. The concept of social media stands for social interaction and creation of user-based content which exclusively occurs through Internet. The social media are excellent tools for networking because of the fast and easy access, easy interaction and vast amount of multimedia attributes. The allocation of social media is determined. The case company helps clarify the specific characteristics of social media usage as part of customer-reference-marketing activities. For IT-firms the best channels to utilize social media in their customer reference marketing activities are publishing and distribution services of content and networking services.
Resumo:
At the present work the bifurcational behaviour of the solutions of Rayleigh equation and corresponding spatially distributed system is being analysed. The conditions of oscillatory and monotonic loss of stability are obtained. In the case of oscillatory loss of stability, the analysis of linear spectral problem is being performed. For nonlinear problem, recurrent formulas for the general term of the asymptotic approximation of the self-oscillations are found, the stability of the periodic mode is analysed. Lyapunov-Schmidt method is being used for asymptotic approximation. The correlation between periodic solutions of ODE and PDE is being investigated. The influence of the diffusion on the frequency of self-oscillations is being analysed. Several numerical experiments are being performed in order to support theoretical findings.
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.