10 resultados para Cartographic feature

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is about detection of local image features. The research topic belongs to the wider area of object detection, which is a machine vision and pattern recognition problem where an object must be detected (located) in an image. State-of-the-art object detection methods often divide the problem into separate interest point detection and local image description steps, but in this thesis a different technique is used, leading to higher quality image features which enable more precise localization. Instead of using interest point detection the landmark positions are marked manually. Therefore, the quality of the image features is not limited by the interest point detection phase and the learning of image features is simplified. The approach combines both interest point detection and local description into one phase for detection. Computational efficiency of the descriptor is therefore important, leaving out many of the commonly used descriptors as unsuitably heavy. Multiresolution Gabor features has been the main descriptor in this thesis and improving their efficiency is a significant part. Actual image features are formed from descriptors by using a classifierwhich can then recognize similar looking patches in new images. The main classifier is based on Gaussian mixture models. Classifiers are used in one-class classifier configuration where there are only positive training samples without explicit background class. The local image feature detection method has been tested with two freely available face detection databases and a proprietary license plate database. The localization performance was very good in these experiments. Other applications applying the same under-lying techniques are also presented, including object categorization and fault detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perceiving the world visually is a basic act for humans, but for computers it is still an unsolved problem. The variability present innatural environments is an obstacle for effective computer vision. The goal of invariant object recognition is to recognise objects in a digital image despite variations in, for example, pose, lighting or occlusion. In this study, invariant object recognition is considered from the viewpoint of feature extraction. Thedifferences between local and global features are studied with emphasis on Hough transform and Gabor filtering based feature extraction. The methods are examined with respect to four capabilities: generality, invariance, stability, and efficiency. Invariant features are presented using both Hough transform and Gabor filtering. A modified Hough transform technique is also presented where the distortion tolerance is increased by incorporating local information. In addition, methods for decreasing the computational costs of the Hough transform employing parallel processing and local information are introduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Työn tavoitteena oli mallintaa uuden tuoteominaisuuden aiheuttamat lisäkustannukset ja suunnitella päätöksenteon työkalu Timberjack Oy:n kuormatraktorivalmistuksen johtoryhmälle. Tarkoituksena oli luoda karkean tason malli, joka sopisi eri tyyppisten tuoteominaisuuksien kustannuksien selvittämiseen. Uuden tuoteominaisuuden vaikutusta yrityksen eri toimintoihin selvitettiin haastatteluin. Haastattelukierroksen tukena käytettiin kysymyslomaketta. Haastattelujen tavoitteena oli selvittää prosessit, toiminnot ja resurssit, jotka ovat välttämättömiä uuden tuoteominaisuuden tuotantoon saattamisessa ja tuotannossa. Malli suunniteltiin haastattelujen ja tietojärjestelmästä hankitun tiedon pohjalta. Mallin rungon muodostivat ne prosessit ja toiminnot, joihin uudella tuoteominaisuudella on vaikutusta. Huomioon otettiin sellaiset resurssit, joita uusi tuoteominaisuus kuluttaa joko välittömästi, tai välillisesti. Tarkasteluun sisällytettiin ainoastaan lisäkustannukset. Uuden tuoteominaisuuden toteuttamisesta riippumattomat, joka tapauksessa toteutuvat yleiskustannukset jätettiin huomioimatta. Malli on yleistys uuden tuoteominaisuuden aiheuttamista lisäkustannuksista, koska tarkoituksena on, että se sopii eri tyyppisten tuoteominaisuuksien aiheuttamien kustannusten selvittämiseen. Lisäksi malli soveltuu muiden pienehköjen tuotemuutosten kustannusten kartoittamiseen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Local features are used in many computer vision tasks including visual object categorization, content-based image retrieval and object recognition to mention a few. Local features are points, blobs or regions in images that are extracted using a local feature detector. To make use of extracted local features the localized interest points are described using a local feature descriptor. A descriptor histogram vector is a compact representation of an image and can be used for searching and matching images in databases. In this thesis the performance of local feature detectors and descriptors is evaluated for object class detection task. Features are extracted from image samples belonging to several object classes. Matching features are then searched using random image pairs of a same class. The goal of this thesis is to find out what are the best detector and descriptor methods for such task in terms of detector repeatability and descriptor matching rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, feature selection in classification based problems is highlighted. The role of feature selection methods is to select important features by discarding redundant and irrelevant features in the data set, we investigated this case by using fuzzy entropy measures. We developed fuzzy entropy based feature selection method using Yu's similarity and test this using similarity classifier. As the similarity classifier we used Yu's similarity, we tested our similarity on the real world data set which is dermatological data set. By performing feature selection based on fuzzy entropy measures before classification on our data set the empirical results were very promising, the highest classification accuracy of 98.83% was achieved when testing our similarity measure to the data set. The achieved results were then compared with some other results previously obtained using different similarity classifiers, the obtained results show better accuracy than the one achieved before. The used methods helped to reduce the dimensionality of the used data set, to speed up the computation time of a learning algorithm and therefore have simplified the classification task

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Green IT is a term that covers various tasks and concepts that are related to reducing the environmental impact of IT. At enterprise level, Green IT has significant potential to generate sustainable cost savings: the total amount of devices is growing and electricity prices are rising. The lifecycle of a computer can be made more environmentally sustainable using Green IT, e.g. by using energy efficient components and by implementing device power management. The challenge using power management at enterprise level is how to measure and follow-up the impact of power management policies? During the thesis a power management feature was developed to a configuration management system. The feature can be used to automatically power down and power on PCs using a pre-defined schedule and to estimate the total power usage of devices. Measurements indicate that using the feature the device power consumption can be monitored quite precisely and the power consumption can be reduced, which generates electricity cost savings and reduces the environmental impact of IT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developing software is a difficult and error-prone activity. Furthermore, the complexity of modern computer applications is significant. Hence,an organised approach to software construction is crucial. Stepwise Feature Introduction – created by R.-J. Back – is a development paradigm, in which software is constructed by adding functionality in small increments. The resulting code has an organised, layered structure and can be easily reused. Moreover, the interaction with the users of the software and the correctness concerns are essential elements of the development process, contributing to high quality and functionality of the final product. The paradigm of Stepwise Feature Introduction has been successfully applied in an academic environment, to a number of small-scale developments. The thesis examines the paradigm and its suitability to construction of large and complex software systems by focusing on the development of two software systems of significant complexity. Throughout the thesis we propose a number of improvements and modifications that should be applied to the paradigm when developing or reengineering large and complex software systems. The discussion in the thesis covers various aspects of software development that relate to Stepwise Feature Introduction. More specifically, we evaluate the paradigm based on the common practices of object-oriented programming and design and agile development methodologies. We also outline the strategy to testing systems built with the paradigm of Stepwise Feature Introduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Personalized medicine will revolutionize our capabilities to combat disease. Working toward this goal, a fundamental task is the deciphering of geneticvariants that are predictive of complex diseases. Modern studies, in the formof genome-wide association studies (GWAS) have afforded researchers with the opportunity to reveal new genotype-phenotype relationships through the extensive scanning of genetic variants. These studies typically contain over half a million genetic features for thousands of individuals. Examining this with methods other than univariate statistics is a challenging task requiring advanced algorithms that are scalable to the genome-wide level. In the future, next-generation sequencing studies (NGS) will contain an even larger number of common and rare variants. Machine learning-based feature selection algorithms have been shown to have the ability to effectively create predictive models for various genotype-phenotype relationships. This work explores the problem of selecting genetic variant subsets that are the most predictive of complex disease phenotypes through various feature selection methodologies, including filter, wrapper and embedded algorithms. The examined machine learning algorithms were demonstrated to not only be effective at predicting the disease phenotypes, but also doing so efficiently through the use of computational shortcuts. While much of the work was able to be run on high-end desktops, some work was further extended so that it could be implemented on parallel computers helping to assure that they will also scale to the NGS data sets. Further, these studies analyzed the relationships between various feature selection methods and demonstrated the need for careful testing when selecting an algorithm. It was shown that there is no universally optimal algorithm for variant selection in GWAS, but rather methodologies need to be selected based on the desired outcome, such as the number of features to be included in the prediction model. It was also demonstrated that without proper model validation, for example using nested cross-validation, the models can result in overly-optimistic prediction accuracies and decreased generalization ability. It is through the implementation and application of machine learning methods that one can extract predictive genotype–phenotype relationships and biological insights from genetic data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tässä työssä testattiin partikkelikokojakaumien analysoinnissa käytettävää kuvankäsittelyohjelmaa INCA Feature. Partikkelikokojakaumat määritettiin elektronimikroskooppikuvista INCA Feature ohjelmaa käyttäen partikkeleiden projektiokuvista päällystyspigmenttinä käytettävälle talkille ja kahdelle eri karbonaattilaadulle. Lisäksi määritettiin partikkelikokojakaumat suodatuksessa ja puhdistuksessa apuaineina käytettäville piidioksidi- ja alumiinioksidihiukkasille. Kuvankäsittelyohjelmalla määritettyjä partikkelikokojakaumia verrattiin partikkelin laskeutumisnopeuteen eli sedimentaatioon perustuvalla SediGraph 5100 analysaattorilla ja laserdiffraktioon perustuvalla Coulter LS 230 menetelmällä analysoituihin partikkelikokojakaumiin. SediGraph 5100 ja kuva-analyysiohjelma antoivat talkkipartikkelien kokojakaumalle hyvin samankaltaisen keskiarvon. Sen sijaan Coulter LS 230 laitteen antama kokojakauman keskiarvo poikkesi edellisistä. Kaikki vertailussa olleet partikkelikokojakaumamenetelmät asettivat eri näytteiden partikkelit samaan kokojärjestykseen. Kuitenkaan menetelmien tuloksia ei voida numeerisesti verrata toisiinsa, sillä kaikissa käytetyissä analyysimenetelmissä partikkelikoon mittaus perustuu partikkelin eri ominaisuuteen. Työn perusteella kaikki testatut analyysimenetelmät soveltuvat paperipigmenttien partikkelikokojakaumien määrittämiseen. Tässä työssä selvitettiin myös kuva-analyysiin tarvittava partikkelien lukumäärä, jolla analyysitulos on luotettava. Työssä todettiin, että analysoitavien partikkelien lukumäärän tulee olla vähintään 300 partikkelia. Liian suuri näytemäärä lisää kokojakauman hajontaa ja pidentää analyysiin käytettyä aikaa useaan tuntiin. Näytteenkäsittely vaatii vielä lisää tutkimuksia, sillä se on tärkein ja kriittisin vaihe SEM ja kuva-analyysiohjelmalla tehtävää partikkelikokoanalyysiä. Automaattisten mikroskooppien yleistyminen helpottaa ja nopeuttaa analyysien tekoa, jolloin menetelmän suosio tulee kasvamaan myös paperipigmenttien tutkimuksessa. Laitteiden korkea hinta ja käyttäjältä vaadittava eritysosaaminen tulevat rajaamaan käytön ainakin toistaiseksi tutkimuslaitoksiin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The estimating of the relative orientation and position of a camera is one of the integral topics in the field of computer vision. The accuracy of a certain Finnish technology company’s traffic sign inventory and localization process can be improved by utilizing the aforementioned concept. The company’s localization process uses video data produced by a vehicle installed camera. The accuracy of estimated traffic sign locations depends on the relative orientation between the camera and the vehicle. This thesis proposes a computer vision based software solution which can estimate a camera’s orientation relative to the movement direction of the vehicle by utilizing video data. The task was solved by using feature-based methods and open source software. When using simulated data sets, the camera orientation estimates had an absolute error of 0.31 degrees on average. The software solution can be integrated to be a part of the traffic sign localization pipeline of the company in question.